پایان نامه برای دریافت درجه کارشناسی ارشد در رشته باغبانی گراشی بیوتکنولوژی و ژنتیک مولکولی محصولات باغی

عنوان:
بررسی تنوع ژنتیکی توده های بومی شنبله (Trigonella foenum-graecum L.) در ایران

استاد راهنما:
دکتر مهدی محب الکریمی

استاد مشاور:
دکتر علی‌رضا قنبری

پژوهشگر:
وحید علیزاده تازه کندی

زمستان ۹۵
عنوان پایان‌نامه: بررسی تنوع زننگی توهده‌های بومی شنبله‌ی (Trigonella foenum-graecum L.) در ایران

چکیده: گیاه دارویی شنبله با نام علمی Trigonella foenum-graecum از گیاهان گلدار، نهاندانه، دولپه ای و جنگل‌برگ و در زمره Calciflores جداییبند و در زمرهی گیاهان است. شنبله‌ی یک سبزی، گیاه دارویی و ادویه‌ی مخصوص خوراکی مفید بوده که بروگه‌ی تازه، خشک شده و همچنین بذرهای آن مورد استفاده قرار می‌گیرد. مواد با اهمیت در بروگ شنبله عبارت‌اند از: کلسیم، آهن، ویتامین A و C. برگ‌های جوان منبع خوبی از پروتئین، مواد معدنی و ویتامین A و C می‌باشند. آنالیز‌های تنوع در سطح مولکولی با استفاده از مارکرهای مبتنی بر PCR که یک روش سریع و کارآمد برای تشخیص ارتباط و تنوع میان زننگی‌ها است صورت گرفت. در این آزمایش تنوع زننگی و روابط میان ۳۲ زننگی شنبله با استفاده از نشانگر ISSR و صفات مورفولوژیکی در قالب طرح کاملاً تصادفی در دانشگاه محقق ارشدی مورد بررسی قرار گرفت. نتایج حاصل از تجزیه خوشه‌ای بر مبنای صفات مورفولوژیکی نشان داد که زننگی‌های مورد مطالعه در ۲ گروه قرار می‌گیرند. داده‌های مولکولی جهت بررسی ارتباط میان زننگی‌ها و روابط زننگی‌های شنبله‌ی مورد استفاده قرار گرفت. از آغازگر استفاده شده در مجموع ۹۵ نوار تشکیل شد که ۷۲ نوار چند شاخه‌ای و ۲۳ نوار چند شاخه‌ای است. تنوع زننگی‌های مورد بررسی قرار گرفت. میان زننگی‌های دانه‌ی ژنومیتزه متوسط آتلی‌های برون‌گرگار و مشاهده شده، الیا پلاکم محوی اطلاعات جنگ شکل و شاخه‌ای به ترتیب ۸۷/۳۲، ۲۷/۴۰، ۸۷/۲۱ و ۳۴/۷۲ بود. دندوگرام حاصل از تجزیه خوشه‌ای با استفاده از ضریب تشخیص و روش الگوریتم UPGMA تنوع بالایی را در بین زننگی‌های مورد بررسی نشان داد و ۲۰ زننگی در ۶ گروه قرار گرفتند.
فهرست مطالب

<table>
<thead>
<tr>
<th>شماره و عنوان مطالب</th>
<th>صفحه</th>
</tr>
</thead>
<tbody>
<tr>
<td>فصل اول - کلیات پژوهش</td>
<td>7</td>
</tr>
<tr>
<td>- 1- مقدمه و هدف</td>
<td>8</td>
</tr>
<tr>
<td>- 2- کلیات</td>
<td>8</td>
</tr>
<tr>
<td>- 2-1 - گیاهشناسی و تاریخچه گیاه دارویی شنبلیه</td>
<td>9</td>
</tr>
<tr>
<td>- 2-1 - میدان و معرفی نیازهای فیزیکی</td>
<td>10</td>
</tr>
<tr>
<td>- 2-1 - ترکیبات شیمیایی و خواص دارویی شنبلیه</td>
<td>10</td>
</tr>
<tr>
<td>- 3-1 - نشانگرهای کلروفیل</td>
<td>11</td>
</tr>
<tr>
<td>- 3-1 - خصوصیات یک نشانگر مناسب</td>
<td>12</td>
</tr>
<tr>
<td>- 3-1 - نشانگرهای مورفولوژیک</td>
<td>13</td>
</tr>
<tr>
<td>- 3-1 - نشانگرهای یووشمیایی</td>
<td>14</td>
</tr>
<tr>
<td>- 3-1 - بررسی سیستمیک</td>
<td>15</td>
</tr>
<tr>
<td>- 3-1 - نشانگرهای مولکولی</td>
<td>16</td>
</tr>
<tr>
<td>8-1 - انواع نشانگرهای DNA</td>
<td>17</td>
</tr>
<tr>
<td>8-1 - RAPD</td>
<td>18</td>
</tr>
<tr>
<td>8-1 - AFLP</td>
<td>19</td>
</tr>
<tr>
<td>Error! Bookmark not defined.</td>
<td>20</td>
</tr>
<tr>
<td>Error! Bookmark not defined.</td>
<td>21</td>
</tr>
</tbody>
</table>

فصل دوم - مبانی نظری پژوهش

پیشینه پژوهش

فصل سوم - مواد و روش پژوهش

Error! Bookmark not defined. | 22 |
Error! Bookmark not defined. | 23 |
Error! Bookmark not defined. | 24 |
Error! Bookmark not defined. | 25 |
Error! Bookmark not defined. | 26 |
Error! Bookmark not defined. | 27 |
Error! Bookmark not defined. | 28 |
Error! Bookmark not defined. | 29 |
Error! Bookmark not defined. | 30 |
Error! Bookmark not defined. | 31 |
Error! Bookmark not defined. | 32 |
Error! Bookmark not defined. | 33 |
Error! Bookmark not defined. | 34 |
نتایج

فصل چهارم - نتایج و بحث

نتایج تجزیه و اریانس و مقایسه میانگین

- ضرایب همبستگی ساده صفات
- تجزیه تحلیل داده‌ها

-ISSR

-ISSR
- جند شکلی زنتیکی در نشانگر
- ISSR

-ISSR
- گروه‌بندی نمونه‌های مورد آزمایش توسط نشانگر

-ISSR

-ISSR
- تجزیه خوشه‌ای داده‌های مولکولی

-ISSR

-ISSR
- مقایسه ماتریس مورفولوژیکی و مولکولی
فهرست جدول‌ها

شماره و عنوان جدول

صفحه

جدول 1-1- نتایج جهت اندازه‌گیری اندازاندازه‌های ایرانی

جدول 1-2- مقادیر آماری توصیفی صفات مختلف زنوتیپ‌های شنبلیه ایرانی

جدول 1-3- ماتریس فاصله ژنتیکی براساس ضریب تشابه

جدول 2-1- مواد مورد نیاز برای اندازه‌گیری شنبلیه مورد مطالعه

جدول 2-2- مواد مورد نیاز برای استخراج DNA

جدول 2-3- دستگاه‌ها و وسایل مورد نیاز در استخراج DNA

جدول 2-4- مواد مورد نیاز برای انجام واکنش PCR در آزمایش

defined.

جدول 3-1- مقایسه میانگین صفات مورفولوژیکی اندازه‌گیری شده شنبلیه

جدول 3-2- مقادیر آماری توصیفی صفات مختلف زنوتیپ‌های شنبلیه ایرانی

جدول 3-3- ضرایب همبستگی بین صفات مورفولوژیک در زنوتیپ‌های شنبلیه

جدول 3-4- نتایج تجزیه عمالی خصوصیات اندامه‌گیری شده

جدول 3-5- آغازگرهای مورد استفاده یا و شاخص‌های بدست آمده

جدول 4-1- ISSR و نشانگرها

جدول 4-2- آغازگرهای به کار برده شده جهت اندازه‌گیری

جدول 4-3- آغازگرهای بدست آمده

جدول 4-4- پارامترهای تنواع زنوتیکی براساس نشانگرهای ISSR

جدول 4-5- ISSR و نشانگرها

Error! Bookmark not defined.
<table>
<thead>
<tr>
<th>شماره و عنوان شکل</th>
<th>صفحه</th>
</tr>
</thead>
<tbody>
<tr>
<td>شکل ۱-۱ - گروه‌بندی خصوصیات مورفولوژیکی زنوتیپ‌های بومی گیاه شنبلیه</td>
<td></td>
</tr>
<tr>
<td>شکل ۱-۲ - دستگاه الکتروفورز استفاده شده برای الکتروفورز محصول PCR</td>
<td></td>
</tr>
<tr>
<td>شکل ۱-۳ - دستگاه الکتروفورز محصول PCR</td>
<td></td>
</tr>
<tr>
<td>شکل ۲-۱ - دستگاه الکتروفورز استفاده شده برای الکتروفورز محصول PCR</td>
<td></td>
</tr>
<tr>
<td>شکل ۲-۲ - دستگاه الکتروفورز استفاده شده برای الکتروفورز محصول PCR</td>
<td></td>
</tr>
<tr>
<td>شکل ۲-۳ - استخراج DNA استخراج شده به روش CTAB</td>
<td></td>
</tr>
<tr>
<td>شکل ۳-۱ - کاشت گیاه شنبلیه در گلخانه</td>
<td></td>
</tr>
<tr>
<td>شکل ۴-۱ - گروه‌بندی نمونه‌های شنبلیه مورد مطالعه بر اساس ماتریس تشابه نشانگرهای ISSR</td>
<td></td>
</tr>
<tr>
<td>شکل ۴-۲ - نشانگر UBC ۸۳۳ حاصل از قطعات تکثیر بر روی ۲۰ زنوتیپ گیاه شنبلیه با نشانگر</td>
<td></td>
</tr>
<tr>
<td>شکل ۴-۳ - نشانگر P ۸۱۱ حاصل از قطعات تکثیر بر روی ۲۰ زنوتیپ گیاه شنبلیه با نشانگر</td>
<td></td>
</tr>
</tbody>
</table>
فصل اول:
کلیات پژوهشی
مقدمه و هدف

تنوع، به دانش‌الإنسان از اختلافات و گوناگونی موجود در میان مجموعه‌ای از موجودات اطلاق می‌گردد. تنوع ویژگی تمام جمعیت‌های بیولوژیک بوده و اساس هتروژیگوی و انعطاف‌پذیری فیزیولوژیک افراد و تکامل موجودات زنده است. تنوع هم در بین جمعیت‌ها و هم درون جمعیت‌ها وجود دارد. تمايز بین جمعیتی اغلب تمایز زنتیکی نیز نامیده می‌شود. تنوع زنتیکی درون یک جمعیت زمانی ایجاد می‌شود که در یک مکان زنی بیشتر از یک آلف در افراد جمعیت وجود داشته باشد که در این صورت جمعیت برای آن مکان، چند شکل نامیده می‌شود (آلارد، 1996). منابع زنتیکی گیاهی علاوه بر این که به عنوان عامل زیر بنا برای توسعه کشاورزی محسوب می‌شوند، به عنوان یک منبع ژنتیکی، به عنوان منبع از سازگاری و همبستگی در برابر تغییرات عوامل محیطی و عمل می‌کنند. تنوع زنتیکی در اثر گسترش ارقام اصلاح شده، امنیت غذایی در جهان را با تهدید مواجه می‌کند. نیاز به حفظ و پیگیری منابع زنتیکی به عنوان محافظای در بررسی مشکلات غیرقابل پیش‌بینی در برابر آنها به این جهت که نیاز به تضعیف تنوع منابع زنتیکی به همراه تضعیف روز افزون به این منابع، خطر دارد. تنوع منابع زنتیکی و اصلاحات کشاورزی است. اگر از تنوع زنتیکی و مدیریت منابع زنتیکی ضمن حفاظت ذخایر زنتیکی، قابلیت استفاده از آنها در برنامه‌های اصلاحی آشکار می‌شود (قروی، 1998). تنوع زنتیکی در روند و تولید ارقام یک‌نوعی، بهره‌برداری از خطرات سیاسی و آبیاری بی‌خواهی و حفظ و پیگیری ذخایر ژنتیکی در آینده بر همگان آشکار است (قاسمی، 1995). مطالعه تنوع زنتیکی نه تنها برای سازماندهی و حفاظت مواد گیاهی، بلکه برای بهره‌برداری از پدیده هتروژیگوی و تولید بذر هیربرد با هتروژیگوی بی‌هشتم با آن اساس‌گذاری پیش‌بینی می‌کند و تحلیل در بررسی تنش‌های زیستی و غیرزیستی نیز اهمیت دارد (رحمان پور و همکاران، 1393). همچنین اطلاعات از تحت‌وی سطح تنوع زنتیکی منابع گیاهی هر محصول اولین و مهم‌ترین گام در جهت برآورد اهداف

1 - Allard
اصلاحی می‌باشد. از مهمترین اهمیت‌های دیگر تنوع زننیکی پایداری جمعیت‌های گیاهی است (وانگ1 و همکاران، 2007). مدیریت حفاظت از گونه‌ها، دانش تنوع زننیکی درون گونه‌های و ارزیابی خطر انقراض و پتانسیل تکاملی در جهان در حال تغییر می‌تواند از مزایای دیگر بررسی تنوع زننیکی باشد (هدریک2، 2001).

روش‌های مختلف در جهت ارزیابی تنوع زننیکی درون گونه‌های گیاهی وجود دارد. ارزیابی صفات ریخت شناسی گیاه همواره در برنامه‌های اصلی جهت جهت برآورد تنوع و گروه‌بندی نژادگان‌ها مورد استفاده بوده است. ولی با توجه به اینکه انداره‌گیری صفات ریخت شناسی برای تعداد زیادی نمونه، نیاز به صرف وقت و هزینه زیادی دارد و همچنین ارزیابی ریخت شناسی به دلیل اثر محیط بر بیان زننیکی است. روش قابل اعتماد برای تعیین تفاوت‌های زننیکی نباشند که اروزه برای بررسی تنوع زننیکی از نشانگرهای مولکولی به طور گسترده استفاده می‌شود (رونالد و ایندرا3، 2001). گروه‌هایی از این نشانگرهای استفاده که استوار بر واکنش زنجیره پلیمراز هستند، برتر خواهند بود (نیل ری 4، همکاران، 2007).

نیاز به بهره‌وری روش‌های اصلی جهت ارزیابی تنوع ژنوتیپ درون ژنوتیپی گیاهان نشانگر مثبتی بر PCR هستند که می‌تواند در مقایسه با نشانگرهای ISSR از جمله نشانگرهای مثبتی بر این‌روا و فاقد معایبی از قبیل تکرار پذیری کم و هزینه بالا می‌باشند (رددی 5 و همکاران، 2003). لیکویز6 و زیتکیویز7 (1994). این پژوهش با هدف تعیین تنوع زننیکی 20 ژنوتیپ بومی گیاه دارویی شنبلیله در ایران با استفاده از صفات مورفولوژیکی و نشانگرهای مولکولی به منظور کمک به روند اصلاحی این گیاه صورت گرفت.

1-2- کلیات

1-2-1- گیاهشناسی و تاریخچه گیاه دارویی شنبلیله

گیاه دارویی شنبلیله با نام علمی Trigonella foenum-graecum از گیاهان گلدار، نهاندانه، Rosal (Fabaceae) در زمرة (Calciflores) و در دو گروه Rosaleae و جداگلبرگ در زمرة (Leguminosae) با نام علمی Papilionoidae و طالیفه به روند بازسازی کمک به 50 سانتی‌متر.
باشد که بعنوان یک گیاه دارویی، زراعی، مرطوبی، آرایشی و بهداشتی حائز اهمیت فراوان است (نجف نوایی، 1232). برگ‌های این گیاه بپیچ شکل با نوک منفرد، به رنگ زرد روشن و گاهی به نوک بزرگه‌ای و فاقد دمگل هستند. گلبرگ‌ها 5 عدد و هر گلبرگ عقبی از همه بزرگتر است درپشت و دو گلبرگ جانی بال و دو تای جلویی نامیده می‌شوند. تعداد برهم‌ها 10 عدد است که به هم چسبیده و یکی آزاد است. کاسه گل دندانه و کرکدار است. ماده‌گی از یک تخمدان تشکیل شده است. میوه شنبلیله به صورت نیام خشکی، به طول تا 11 سانتی‌متر و عرض تا 1 تا 2 دانه است. دانه‌ها به رنگ زرد نارنجی و گاهی قهوه‌ای رنگ است. این دانه‌ها به طول تا 6 میلی‌متر و عرض تا 3 میلی‌متر هستند.

از آنجایی که این گیاه از تیره پروانه‌داران است، توانایی هم‌زیستی با باکتری‌های تثبیت‌کننده را دارد و می‌تواند بخشی از نیتروژن مورد استفاده خود را تولید کند (مطافریمان، 1375). تکثیر شنبلیله از طریق بذر انجام می‌گیرد. بذر در زمین اصلی با در نظرگرفتن فاصله بین خطوط 40 سانتی‌متر و این بین بزرگ روز خلوت 60 سانتی‌متر یا بزرگتری به طول تا 3 تا 4 ماه پس از کاشت معمولاً در شرایط اقلیمی مناطق معتدل ایران بذر بزرگ می‌نردد. مصرف تای در حدود 25 کیلوگرم در هکتار است و از برش 400 تا 800 کیلوگرم در هکتار بذر به دست می‌آید (مطافریمان، 1375). گیاه در نواحی معتدلی یا کم باران می‌روید. درجه حرارت 10 تا 15 سانتی‌گراد را تحمل می‌کند.

درجه حرارت مناسب برای رشد بین 27/5 تا 28/5 درجه‌ی سانتی‌گراد است. ارتفاع روشی از 500 تا 2000 متر از سطح دریا است. رطوبت مورد نیاز برای گیاه معادل 500 تا 700 میلی‌متر باردندگی است. خاک‌های رست سبز نامطلوب است و در خاک‌های لومی و خوب زهکشی شده و نیز خاک‌های سبز و حبوب شنی مناسب بین PH 5/5 تا 8/2 است. با در خاک‌های خشک تولید می‌کند. PH رشد می‌کند. مناسب بین PH 5/5 تا 8/2 است اما در خاک‌های خشک عمیکرده بهتری دارد (مطافریمان، 1375).

1-2- مبدا و معنی تبره
منشا گیاه شنبلیله ایران و غرب آسیا است و به سایر نقاط دنیا برده شده است. در مقیاس جهانی منطق عمده کشت شنبلیله کشورهای نظیر هند، مراکش، مصر، اتیوپی و غیره است و در حال حاضر، در اغلب کشورهای اروپایی، آسیایی و آفریقایی کشت می‌شود (آمید بی‌گی، 1994). در حال حاضر در سال‌های اخیر با مشخص شدن ارزش‌های غذایی و دارویی شنبلیله و از سوی دیگر توقفات کم خاکی
و سازگاری نسبتاً وسیع آن به کشت در مناطق مختلف، دامنه کشت و زرع آن از آمریکا تا هندوستان گسترش یافته است (آچاریا و همکاران، 2006; مونتگومری و همکاران، 2007; بتروبولوس، 2002).

1-2-3 ترکیبات شیمیایی و خواص دارویی شنبلیله

شنبلیله بعنوان یک سبزی، گیاه دارویی و ادویه مضر خوراکی مهم بوده که برگ‌های تازه، خشک شده و همچنین بذرها آن مورد استفاده قرار می‌گیرد. بر طبق سیستم دارویی قدیمی آیور ودا، شنبلیله یک داروی گیاهی با مزه تلخ یا تند است که در برابر ایستشای موثر می‌باشد (راجاگوپالان، 2001). شنبلیله دارای ارزش غذایی بالایی است و مواد با ارزشی چون کلسیم، فسفر، اهن، کاروتین، ویتامین C و پروتئین در برگ شنبلیله وجود دارد (نazar، همکاران، 2007; همکاران، 2004). بذور شنبلیله حاوی موادی نظیر اکالوتید، تریکولات، کولین و سایر موادی است که در محیط خیس‌تر می‌تواند در برابر بی‌اشتهای موثر باشد (راجاگوپالان، همکاران، 2004). پژوهش‌های انجام شده در سالهای اخیر نشان می‌دهد که شنبلیله می‌تواند در درمان دیابت به وسیله کاهش قند خون می‌باشد (نجف‌پور نوایی، همکاران، 2015; امید بیگی، همکاران، 2006). پژوهش‌های دیگر نشان می‌دهند که شنبلیله می‌تواند در درمان درمان دیابت به وسیله کاهش قند خون و میزان کلسترول موثر باشد (شامرا، 1990).

1-2-3 نشانگرها

آزاد بودن یا چسبیدگی بودن لاله گوش یک صفت وراثی است که در بین افراد جامعه نیز متفاوت است. صفتی از این قبیل را می‌توان نشانگر به شمار آورد، زیرا می‌تواند بعنوان نشانه‌ای برای شناسایی حامل آن صفت مورد استفاده قرار گیرند. به طور کلی هر صفتی که بین افراد متغیر باشد ناشی از تفاوت موجود بین ردیف کروموزوم‌های آنهاست که به نتایج نیز منتقل می‌شود. این تفاوت‌ها می‌توانند بعنوان نشانه‌ای نشانگر زننگی به کار گرفته شوند. این تفاوت‌ها ممکن است به طریق مختلفی

1- Acharya
2- Montgomery
3- Petropoulos
4- Rajagopalan
5- Nazar
6- Ebubekir
7- Sandor
8- Sharma
ظراف شود. برخی از این تفاوت‌ها در صفات قابل رویتی مانند رنگ گل، وجود یا عدم وجود ریشک در گل‌های مختلف با یکدیگر بودن سطح دانه‌های مصرف‌زای خود در آزمایش‌های مختلف تجربیات می‌کنند. این گونه نشان‌گران‌ها نشان‌گر مورفولوژیک می‌نامند. برخی از تفاوت‌های موجود در ریخت DNA بین دو موجود ممکن است به صورت بروتئین‌ها با اندازه‌های مختلف تجربیات که به یک‌روش‌های متفاوت پیش‌سازی قابل توجه و مطالعه می‌گردد. این قبیل نشان‌گران‌ها را نشان‌گر مولکولی در سطح بروتئین‌ها می‌نامند که از یک جمله می‌توان به سیستم آپوزی‌ای آن‌ها اشاره کرد؛ اما دسته‌های دیگر از تفاوت‌های DNA موجود در سطح بروتئین‌ها تأثیری بر یک می‌گذارند. این دسته از تفاوت‌ها را می‌توان با یک‌روش‌های مختلف شناسایی و رده‌بندی کرد که به عنوان نشان‌گر مورد استفاده قرار می‌گیرند. این نشان‌گرها که تقریباً تعدا‌دشان نامحدود است فقط از راه تجزیه و تحلیل مستقیم DNA قابل تهیه و بنا بر این، آنها نشان‌گر مولکولی DNA در سطح DNA گفته می‌شود.

پس به طور کلی برای آنکه صفتی بعنوان نشان‌گر زنتیکی مورد استفاده قرار گیرد، باید دستکم دو ویژگی زیر را داشته باشد:

1. در بین افراد متفاوت باشد (پیش‌سازی نشان دهد).
2. به توارث برسد

این و کاربرد نشان‌گر مولکولی تفاوت چندان با سایر نشان‌گرها نشان‌گر مولکولی مانند نشان‌گرها مورفولوژیک ندارد (نقوی و همکاران، ۱۲۷۱).

تحولی که در علوم زیستی به نشان‌گرها مولکولی نسبت داده می‌شود به دلایل زیر می‌باشد:

1. فراوانی فوق العاده این دسته از نشان‌گران
2. عدم تاثیر بذری آنها از شرایط محیطی خارجی و داخلی موجود
3. امکان کارگیری آنها در مراحل تغییرات رشد جنینی
4. سهولت تشخیص افراد ناخالص از خالص
5. دقت نتایج و قابلیت مطلوب و سهولت تجزیه و تحلیل و تفسیر آن
6. دسترسی به برنامه‌های رایانه‌ای قوی برای تجزیه و تحلیل و تفسیر سریع نتایج (نقوی و همکاران، ۱۳۸۶).

۱- خصوصیات یک نشان‌گر مناسب

۱. تشخیص آسان همه‌تکه‌های ممکن (هموزیگوت‌ها و هتروزیگوت‌ها) از یکدیگر
2. تظاهر در مراحل اولیه زندگی
نشانگرهای مورفولوژیک عمداً صفات کیفی هستند که به صورت عینی قابل رتبه‌بندی می‌باشند. این نشانگرهایها در طبیعت یافت می‌شوند و یا در نتیجه آزمایش‌های جهش‌زایی بدست می‌آیند. نشانگرهای مورفولوژیکی دارای توالی غالب، مغلوب هستند. تا چند سال اخیر، نشانگرهای زنتیکی مورد استفاده برای تهیه نشانگرهای دیگری که می‌توانند مورد استفاده قرار گیرند، در مقایسه با نشانگرهای مورفولوژیکی بسیار کمتر استفاده می‌شوند (چاولا، 1382). بنابراین، تا اینکه نشانگرهای مورفولوژیکی غالب، واکنش‌های زنتیکی پس از گروه‌یابی پیش‌بینی می‌شود، تأثیر نشانگرهای مورفولوژیکی فقط تا زمانی به‌وجود می‌آید که این نشانگرهای مورفولوژیکی در طبیعت واقع می‌شوند یا به‌صورت عمدهً در مزرعه یا گلخانه پیدا می‌کنند. نشانگرهای مورفولوژیکی اغلب، نشانگرهای مورفولوژیکی غالب، این نشانگرهای مورفولوژیکی مربوط به نشانگرهای مورفولوژیکی می‌باشند و می‌تواند به‌عنوان نشانگرهای مورفولوژیکی بودند. در این صورت، فنوتیپ‌های اقتصادی و نشانگرهای مورفولوژیکی مربوط به این نشانگرهای مورفولوژیکی مربوط به نشانگرهای مورفولوژیکی می‌باشند.

1 - Kato
صفات اساس زنتنیکی ناشناخته و پیچیده دارد (چیس، 2005). به طور کلی مشخص شده است که داده‌های فنوتیپی و مورفولوژیکی برای مطالعات پلی‌زنتنیکی مناسب نیستند (چیس، 2000).

۱- نشانگرهای بیوشیمیایی

نشانگرهای بیوشیمیایی محصول تظاهر زن هستند و گوناگونی را در سطح بروتین آشکار می‌کنند (هاردن، همکاران، 1994). نشانگرهای بیوشیمیایی آزمایشی از الگوی آیوژاونها و پروتئین‌های ذخیره‌ای، اولین سیستم‌های نشانگری می‌باشد که در مقياس وسیع برای طبقه‌بندی دامنه وسیعی از گیاهان استفاده شده‌اند (ژیدرار، 2000). این نشانگرها در مقایسه با صفات کمی بسیار کم تحت تأثیر شرایط محیطی قرار می‌گیرند. کار با این نشانگرها ارزان، نسبتاً سریع است و از نظر تحقیقی خوبی هم برخوردار می‌باشد. همچنین برخی از نشانگرهای بیوشیمیایی مانند آلوزاونها (بروتئین‌های مختلف تولید شده به وسیله اشکال آلی مربوط به یک مکان زنی با فعالیت کاتالیکی مشابه) و آیوژاونها (پلیمرهای ایجاد شده از موئونرهای حاصل از مکان‌های زنی جداگانه با فعالیت کاتالیکی مشابه) هم‌اکنون به دلیل خطاها وارد بر مطالعات بروتئین‌ها و آیوژاونها و همچنین مشکلاتی که از نظر نامشخص بودن وضعیت قرارگرفتن آلی‌ها در یک یا چند مکان زنی بیشتر می‌آید به نظر می‌رسد مناسب‌ترین ابزار این نوع مطالعات آلوزاونها هستند (کوردیو، همکاران، 2003; استوارت، همکاران، 1996؛ هاردن، همکاران، 2000). در مجموع، این نشانگرها دارای چندشکلی کمی هستند. همچنین در برازندگان همه نشانگرهای زن‌تیکی در سطح DNA نبوده و نمی‌توانند نمایندگی کامل زن‌تیکی باشد (استیوو، همکاران، 1999). به طوری که نشانگرهای در سطح DNA آلزاهم متصل به تغییر در سطح بروتئین نمی‌گردد. مانند تغییرات ایجاد شده در انتروپی نوای مجار، تغییر در سطح هم‌پیمانه متوالی و همچنین تغییر در آمینواسیدهایی که در تغییر بار الکتریکی بروتئین اثری ندارند. تفسیر مولکولی بسیار مشابه برخی از پروتئین‌ها، به خاطر الگوهای بودن، نیاز به فهای ژنتیکی را و مهمتر از همه تعداد محدود آن‌ها در گونه‌های گیاهی و تغییرات پس از ترجمه باعث کاربرد محدود آن‌ها گشته است (هاردن، همکاران، 1996).
نشانگرهای سیتوژنتیکی نمایانگر تنوع در ساختار کروموزوم‌ها هستند. تلوئینتیک‌ها و ایزوکروموزوم‌ها، جایگاهی هستند که در کروموزوم‌ها نواحی از این گروه‌ها بر روی گروه‌هایی از این مولتیپل‌ها و چندنمره از این اجزاء جهت دسترسی به اهداف اصلاحی و تغییر مشخصات آن، گروه‌هایی را برای اخلاق و ازدواج کروموزوم‌ها می‌توانند بیانگر اختلاف‌های زننیکی باشد (شارما، 1989 و جمعیت‌های متعلق به یک گونه، هر یک سازمانی زننیکی خاص خود را با محیطی که در آن می‌رویدند، نشان می‌دهند (میرزایی ندوشن و همکاران، 1381).

نشانگرهای مولکولی

در شیوه سنگین، ارزیابی تنوع زننیکی براساس خصوصیات فنولوژیک و مورفولوژیک صورت می‌گیرد، این روش زمان‌بر و در آن، تعدادی از صفات تحت تأثیر تغییرات محیطی قرار می‌گیرند و با توجه به تفاوت میکرو و بزرگ‌ترین تنوع بین کروموزوم‌های گیاهان، این روش کارایی لازم را نخواهد داشت. این انواع روش‌هایی که برای تخمین میزان تنوع زننیکی در بین گونه‌های گیاهی موجود هستند، ثابت شده است که نشانگرهای مولکولی DNA ابزار قدرتنده جهت ارزیابی تنوع و روابط زننیکی هستند. نشانگرهای مولکولی ابزار‌هایی هستند که برای ارزیابی تنوع زننیکی و ارائه گیاهی و اصلاح گیاهان فراهم آورده‌اند. آن‌ها کاربردهای زیادی در بررسی تنوع زننیکی، انجمن نگاری، تشخیص اینترتوپرمون، پایه روابط خویشاوندی بین گونه‌ها، شناسایی ارقام، تجزیه و تحلیل فیلوژنیک، انتخاب دقیق والدین مؤثر و کارایی در تولید دو گونه قوی دارد (رن و تیمکو، 2001)

روش‌های بر پایه واکنش زنجیره‌ای پلیمراز (PCR) به دلیل سهولت، هزینه پایین، سرعت و عدم نیاز به کاوشگر گیاه‌های رادیواکتیو، امروزه به طور گسترده‌ای در بررسی تنوع زننیکی ارقام مختلف گیاهی مورد استفاده قرار می‌گیرند. از نشانگرهای مبتنی بر PCR که به طور وسیعی مورد استفاده قرار می‌گیرند,

1- Sharma
2- Ren & Timko
می‌توان نشانگرهای RAPD، SSR و AFLP را نام برده. هر یک از این نشانگرهای مزایا و معایبی دارد. انتخاب یک نشانگر مولکولی بستگی به سودمندی و سادگی آن دارد. بهترین نشانگرها برای نقشه‌برداری زنوم، انتخاب به کمک نشانگرها، مطالعات بلی‌زنی انتهای هستند که هزینه باین‌پایه داشته و به تجهیزات زیادی احتیاج داشته باشند. از سال 1994 یک نشانگر نشانگر مولکولی جدید، که تکنیک‌های ISSR، انتخاب به کمک نشانگرها، مطالعات پلی‌پریتخیزه‌ای، و همکاران (1994) در حضور یک آغازگر که برای یک آغازگر که برای بین تواله‌های ساده (ISSR یا SSR) معرفی گردید (زیتکی واژی (زیتکی واژی و همکاران، 1994).)

نشانگرهای ISSR در حضور یک آغازگر که برای بین تواله‌های ساده (ISSR یا SSR) معرفی گردید (زیتکی واژی (زیتکی واژی و همکاران، 1994).) معرفی گردید (زیتکی واژی (زیتکی واژی و همکاران، 1994).)

۱- انواع نشانگرهای DNA

نشانگرهای DNA به دو دسته نشانگرهای مبتنی بر دورگسازی اسیدهای نوکلئیک و نشانگرهای مبتنی بر واکنش زنجیزهای پلیمراز (PCR) تقسیم می‌شوند. در زیر به تعدادی از این نشانگرهای که در تجزیه‌های زنی‌بایی و مکان‌بایی زن‌های کنترل کننده صفات کمی مورد استفاده قرار می‌گیرند، اشاره می‌شود.

۱- RAPD

نشانگر RAPD یا تکنیک غیر اختصاصی بوده و مبتنی بر استفاده از آغازگر منفرد تصادفی می‌باشد و به DNA منظور تکنیک چندین قطعه از آغازگر به یک محل از زنوم مشتق و به صورت دو قطعه کوتاه آغازگری با جهت معکوس طراحی می‌شود (جانز و همکاران، 1997). مطالعات متعددی نشان می‌دهد که تغییر بارامترهای مختلف از جمله نسبت نمونه به آغازگر غلتگی بلی‌پریتخیزه‌ای و حتی دستگاه تا QUAL (Taq) پلیمراز و حتی دستگاه یا تغییر در کاهش آغازگر می‌گیرد. بنابراین چهت

1. Zietkiewicz
2. Reddy
3. Jones

15
افزایش تکرار بیشتری این نوع نشانگر، لازم است که شرایط استاندارد برای واکنش آن در نظر گرفته شود. اما با این حال نشانگرهای RAPD عموماً در تحقیقات ژنتیکی به دلیل سرعت فرآیند و سهولت کاربرد مورد استفاده قرار می‌گیرد (Agarama و Tuinstra، ۲۰۰۳، پنوار ۴ و همکاران، ۲۰۱۰). از دیگر خصوصیات نشانگر RAPD آن است که کل جهت بوده و توانایی ردبندی اختلاف تک نوکلئوتیدی در میان زنومنها را دارد و بنابراین می‌توان از این نشانگر در تفکیک گونه‌های یک جنس بر پایه میزان شباهت زنومی و قرابت جغرافیایی با موقعیت استفاده نمود (نیروی ۳ و همکاران، ۲۰۱۱).

نتیجه‌گیری از مزایا و معایب RAPD، این تکنیک برای اهداف متنوعی از قبیل تهیه نقشه‌های پیوستگی ژنتیکی، اتصال و ساختار زنومی، نشانگر کرون زنومی و شباهت مشابه، گوشواره، ارتباط فیلوژنیک و قربانی و قرابت در بین گونه‌های یک جنس، تهیه نقشه‌های پیوستگی و آنتی‌ژنیک، ایجاد نقشه‌های زنومی و ارتباط فیلوژنیک در میان آنها و در حالت کلی از این چنین هر نوع نشانگری استفاده می‌شود (Agarama و Tuinstra، ۲۰۰۳، پنوار ۴ و همکاران، ۱۹۹۹).

AFLP

این روش در حقيقة ترکیبی از RFLP و RAPD است. تکنیک انتخابی قطعات برشی تولید شده RFLP با استفاده از DNA بوسیله انزیم‌های برشی در PCR جستجو می‌شود. این روش شامل، هضم اندونمی پرندیکمی با دو انزیم DNA PCR و اتصال پیوستگی دو انتهای قطعات برشی (وجود سازگاری برای طراحي آغازگرها ضروری است، ژیرا توالی جایگاه‌های برشی در دو انتهای قطعات برشی برای طراحي آغازگرها کافی نیست) و بالاخره انجام PCR در دو مرحله مجزا می‌باشد (Rinolde و همکاران، ۱۹۸۳).

1. Agrama & Tuinstra
2. Panwar
3. Sherry
4. Nebaure
5. Gupta
6. Amplified fragment length polymorphism
7. Reynolds
Family name: Alizadeh Tazeh Kandi
Name: Vahid

<table>
<thead>
<tr>
<th>Title of Thesis:</th>
<th>Assesment of fenugreek (Trigonella foenum-graceum L) accessions in Iran</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervisor:</td>
<td>Dr. Mehdi Mohebodini</td>
</tr>
<tr>
<td>Advisor:</td>
<td>Dr. Ali Reza Ghanbari</td>
</tr>
<tr>
<td>Graduate Degree:</td>
<td>M.Sc.</td>
</tr>
<tr>
<td>Major:</td>
<td>Horticultural sciences</td>
</tr>
<tr>
<td>Specialty:</td>
<td>Biotechnology and Molecular Genetic of Horticulture Crops</td>
</tr>
<tr>
<td>University:</td>
<td>Mohaghegh Ardabili</td>
</tr>
<tr>
<td>Faculty:</td>
<td>Agricultural and Natural Resources</td>
</tr>
<tr>
<td>Graduation date:</td>
<td>95/11/23</td>
</tr>
<tr>
<td>Number of pages:</td>
<td>59</td>
</tr>
</tbody>
</table>

Abstract: Fenugreek with the scientific name (*Trigonella foenum-graceum*) of flowering plants, angiosperm, two cotyledons and is among the calciflores. Fenugreek as a vegetable, herb and spice scented foods is important that fresh leaves, dried and its seeds also are used. Fenugreek leaves has materials important such as calcium, carotene, ascorbic acid, protein, thiamin and riboflavin. Young leaves are a good source of protein, minerals and vitamins A and C. Diversity analysis at the molecular level using PCR based markers is the efficient and rapid method of identifying the relationships and differences among the genotypes. In the present study, genetic diversity and relationships among 20 collected genotype fenugreek accessions were evaluated using morphological characters and ISSR markers in a randomized complete block design with 3 replications. Results of cluster analysis based on morphological traits shown that the studied genotypes classified into 3 groups. The genotyping data were used to understand the relationships among the collected accessions and identify genetically diverse genotype fenugreek. The 14 primers gave a total of 95 bands, among which 73 were polymorphic. The genetic diversity estimated by Shannons information index was 0.41, revealing a quite high level of genetic diversity in the germplasm. The average number of observed allele, effective allele, polymorphic information content (PIC) and Neis index were 6.78, 5.21, 0.24 and 0.27, respectively. Cluster analysis based on similarity coefficient using Unweight Pair Group Method with Arithmetic mean (UPGMA) indicated wide range of diversity across the studied accessions.

Keywords: genetic diversity, germplasm, primers, ISSR
University of Mohaghegh Ardabili
Faculty of Agriculture and Natural Resources
Department of Horticulture Sciences

Thesis submitted in partial fulfilment of the requirements for the degree of M.Sc. in Biotechnology and Molecular Genetic of Horticultural Crops

Title:
Asseement of genetic diversity of fenugreek (*Trigonella foenum-graecum* L) accessions in Iran

Supervisor:
Mehdi Mohebodini (Ph.D)

Advisor:
Alireza Ghanbari (Ph.D)

By:
Vahid Alizadeh Tazeh Kandi

Feb 2017