پایان نامه برای دریافت درجه کارشناسی ارشد
در رشته مهندسی برق گرایش قدرت

عنوان:
مدیریت بهینه انرژی یک سیستم تغذیه الکتریکی ترکیبی برای کار در حالت‌های جدا از شبکه با استفاده از الگوریتم بهینه سازی شمع–پرداز

استاد راهنما:
دکتر سیدجمال سیدشنوا

استاد مشاور:
پروفسور حسین شایقی

پژوهشگر:
نوید افسری اردبیلی

پایيز-95
چکیده: موضوعات مربوط به سیستم‌های ترکیبی تأمین انرژی الکتریکی، از منابع مختلفی است که در امور مورد توجه محققان در زمینه سیستم‌های قدرت در گرفته است. از همین رو در این پایان‌نامه یک سیستم ترکیبی انرژی الکتریکی در حالت جدا از شبکه از دید مدیریت بهینه تولید، مطالعه قرار گرفته است. سیستم فنولیپک و توربین بادی به عنوان منابع تجدیدپذیر ارزی با تولید ویژه‌ای بهره‌مندی شده به‌وسیله بسیاری تابشی خورشید و سرعت باد منطقه در نظر گرفته شده‌اند. از دیزل‌ژنرатор و باتری نیز به ترتیب به عنوان سیستم پشتیبانی و ذخیره‌ساز انرژی استفاده شده است. برای حل مسأله بهینه‌سازی علاوه بر روش استفاده شده در دیگر پژوهش‌ها برای انجام اقدامات بهینه‌تری از یک روش ابتکاری ترکیب الکترونیک جستجوگر شمع-پرتو و الگوی ریاضی بررسی‌های بهبودی انجام گرفت. گزارش و گزارش از این روش، سیستم ترکیبی انرژی الکتریکی برای تأمین انرژی الکتریکی در حالت جدا از شبکه بهینه‌تری بدین صورت که انتخاب اندازه بهینه از دو ترکیب الکترونیک جستجوگر-پرتو و الگوی ریاضی بهبودی ریزی، مورد بررسی قرار گرفت. منابع و مدارک مورد نیاز در طول دوره بهبودیاری که بخشی از فرآیند ترمیم اندام بهینه اجرا می‌شود، توسعه الگوریتم رياضي انجام می‌شود. نتایج در سال‌های مختلف موثر تجزئی و حلول قرار گرفته به‌خوبی که در سال‌های شرایط مختلف به‌خوبی سیستم ترکیبی انرژی الکتریکی بررسی شده است. با اجرا کدنامه برآمد در محیط نرم‌افزار متلب و مقایسه نتایج، کارآمدی روش ارائه شده در این پایان‌نامه اثبات شده است. همچنین با استفاده از داده‌های سامان‌ساز سالنی، انجام بهینه‌تری از یک سیستم ترکیبی انرژی الکتریکی برای تأمین اندازه‌بندی بار الکتریکی دانشگاه فنی و مهندسی دانشگاه محقق اردیبهشتی، به عنوان یک سیستم مطالعه عملی مشخص شده و امکان مطالعه بر روی شاخص‌های قابل‌توجه اطمنان سیستم ترکیبی انرژی الکتریکی فراهم شده است.
<table>
<thead>
<tr>
<th>فهرست مطالب</th>
<th>صفحه</th>
</tr>
</thead>
<tbody>
<tr>
<td>فصل اول: کلیات پژوهش</td>
<td></td>
</tr>
<tr>
<td>۱-۱- مقدمه</td>
<td>۲</td>
</tr>
<tr>
<td>۱-۲- مطالب تجدیدپذیر انرژی</td>
<td></td>
</tr>
<tr>
<td>۱-۳- سیستم‌های ترکیبی انرژی الکتریکی</td>
<td></td>
</tr>
<tr>
<td>۱-۴- اهداف پژوهش</td>
<td></td>
</tr>
<tr>
<td>۵-۱- ساختار پایان نامه</td>
<td></td>
</tr>
<tr>
<td>فصل دوم: پیشنهاد تحقیق</td>
<td></td>
</tr>
<tr>
<td>۹-۱- مقدمه</td>
<td></td>
</tr>
<tr>
<td>۹-۲- پخش بار بهینه</td>
<td></td>
</tr>
<tr>
<td>Error! Bookmark not defined.</td>
<td></td>
</tr>
</tbody>
</table>
فصل سوم: مدل‌سازی اجزای سیستم ترکیبی انرژی الکتریکی

فصل چهارم: نتایج حاصل از شبیه‌سازی
فصل پنجم: نتیجه‌گیری و پیشنهادات

1-1 نتیجه‌گیری

1-2 پیشنهادات

فهرست منابع و مآخذ

پیوست‌ها و ضمانت

پیوست 1: داده‌های تابش خورشید شکل 4-19-الف

پیوست 2: داده‌های سرعت باد براساس نمونه‌گیری سه ساعتی از هوای ساسی اردبیل

پیوست 3: داده‌های مربوط به تفاضل بار در شکل 4-19-ج
جدول ٢-١: مقدار واقعی به ساله سرعت باد و تابش خورشید

جدول ٣-١: خلاصه اطلاعات سیستم‌های ذخیره‌کننده انرژی

جدول ٤-١: پارامترها و اطلاعات اقتصادی هر واحد سیستم فتوولتاییک (Maleki et al., ٢٠١٥)

جدول ٤-٢: پارامترها و اطلاعات اقتصادی هر واحد توربین بادی (Maleki et al., ٢٠١٥)

جدول ٤-٣: پارامترها و اطلاعات اقتصادی هر واحد باتری و مبدل (Maleki et al., ٢٠١٥)

جدول ٤-٤: پارامترها و اطلاعات دیزل‌نترژاتور (Tazvinga et al., ٢٠١٥)

جدول ٤-٥: ضرایب وزنی اعمال شده در دو حالت بهره‌برداری

جدول ٤-٦: نتایج پخش بار بهینه سیستمی اول بدون محاسبه اندماز بهینه

جدول ٤-٧: خلاصه نتایج بهینه‌سازی برای حالت‌های مختلف در سیستم‌های دوم...

جدول ٤-٨: جزئیات نتایج بهینه‌سازی در سیستم‌های دوم...

جدول ٤-٩: اطلاعات مربوط به اجزای سیستم ترکیبی

جدول ٤-١٠: خلاصه نتایج بهینه‌سازی در سیستم‌های سوم با LPSP=%

جدول ٤-١١: جزئیات نتایج بهینه‌سازی در سیستم‌های سوم با LPSP=%

جدول ٤-١٢: جزئیات نتایج بهینه‌سازی در سیستم‌های سوم با LPSP=%

جدول ٤-١٣: جزئیات نتایج بهینه‌سازی در سیستم‌های سوم با LPSP=%
فهرست شکل‌ها

شماره و عنوان شکل

شكل ۲-۱: ساختار سیستم ترکیبی مورد بررسی در مرجع (Tazvinga et al., 2015)

Error! Bookmark not defined.

شكل ۲-۲: ساختار سیستم بررسی شده در مرجع (Tazvinga et al., 2014)

Error! Bookmark not defined.

شكل ۲-۳: سیستم ترکیبی در حالت حلقه بسته (Tazvinga et al., 2014)

Error! Bookmark not defined.

شكل ۲-۴: سیستم ترکیبی در حال حاضر (Tazvinga et al., 2014)

Error! Bookmark not defined.

شكل ۲-۵: نمایش دیاگرامی سیستم ترکیبی مورد بررسی در مرجع (Maleki et al., 2015)

Error! Bookmark not defined.

شكل ۲-۶: ساختار سیستم ترکیبی و مقادیر پیش‌بینی شده توربین بادی و سیستم فتوولتاژیک در مرجع (Maleki et al., 2015)

Error! Bookmark not defined.

شكل ۲-۷: ساختار سیستم ترکیبی مورد بررسی در (Maleki & Pourfayaz, 2015)

Error! Bookmark not defined.

ماکلی و پورفایز، هریسه سالانه افزایش تضاد بار به ازای LPSP های مشخص (2015)

Error! Bookmark not defined.

شكل ۲-۸: نتایج مشارکت واحدهای دیزلی در تأمین تضاد بار در (Ogunjuyigbe et al., 2016)

Error! Bookmark not defined.

شكل ۲-۹: نتایج پخش بار بهینه در مرجع (Ogunjuyigbe et al., 2016) برای دوره ۴۸ ساعت

Error! Bookmark not defined.

شكل ۲-۱۰: نتایج بهینه در مرجع (Ogunjuyigbe et al., 2016) برای دوره ۴۸ ساعت

Error! Bookmark not defined.

شكل ۲-۱۱: نتایج پخش بار بهینه در مرجع (Ogunjuyigbe et al., 2016) برای دوره ۴۸ ساعت

Error! Bookmark not defined.

شكل ۲-۱۲: نتایج پخش بار بهینه در مرجع (Ogunjuyigbe et al., 2016) برای دوره ۴۸ ساعت

Error! Bookmark not defined.

و
شکل 2-13: توابع احتمالی برای تابش خورشید، سرعت باد و تقاضای بار استفاده شده در مرجع
(جوادی و همکاران، 1395)...

بدر

شکل 2-14: ساختار سیستم ترکیبی در محیط نرم‌افزار HOMER
شکل 2-15: نمايش نتایج و داده‌های ورودی در محیط

شکل 3-1: نمايش حرکت خرسی پروانه در طی مدت...

شکل 3-2: تعادل شمع‌های به روز شده با افزایش تکرار

شکل 3-3: نحوه بروز رسانی متغیرها در الگوریتم شمع-پروانه...

شکل 3-4: ساختار کلی سیستم ترکیبی تأمین انرژی مورد مطالعه...

شکل 3-5: مراحل گام به گام طراحی سیستم ترکیبی

شکل 3-6: فرآیند مالی برای حالت طول عمر برای وسیله و سیستم

شکل 3-7: فرآیند مالی با در نظر گرفتن تعویض وسیله در طی طول عمر سیستم...

شکل 3-8: فرآیند مالی وسیله با در نظر گرفتن نرخ استقاق

شکل 3-9: روند‌نماي انجام محاسبات بهینه‌سازی سیستم ترکیبی انرژی الکتریکی

شکل 3-10: ساختار سیستم ترکیبی مورد مطالعه...

شکل 4-1: میانگین داده‌های تابشی و سرعت باد ساعتی

شکل 4-2: میانگین تقاضای بار و تولید هر واحد

شکل 4-3: نتایج پخش بار برای (الف): 1 و 2 case

شکل 4-4: وضعیت شارژ باتری در شرایط مختلف بهره‌برداری بدون محاسبه اندمازه بهینه...

شکل 4-5: درصد تولید توان و هزینه اجزای سیستم ترکیبی توربین بادی اسپیس فنولتایپک/باتری

شکل 4-6: نتایج بازرگانی بهره‌برداری بدین محاسبه اندمازه بهینه...

Book not defined.
شکل 4-7: درصد تولید نیروگاه در هر یک از اجزای سیستم ترکیبی شامل سیستم تولیدنیک/باتری/دیزل

Error! Bookmark not defined.

شکل 4-8: درصد تولید نیروگاه در هر یک از اجزای سیستم ترکیبی توربین بادی/باتری/دیزل

Book not defined.

Error! Bookmark not defined.

شکل 4-9: درصد تولید نیروگاه در هر یک از اجزای سیستم ترکیبی توربین بادی/سیستم تولیدنیک/باتری/دیزل

Book not defined.

Error! Bookmark not defined.

شکل 4-10: پخش بار به همین سیستم ترکیبی شامل سیستم تولیدنیک/باتری/دیزل

Book not defined.

Error! Bookmark not defined.

شکل 4-11: پخش بار به همین سیستم ترکیبی شامل سیستم تولیدنیک/باتری/دیزل

not defined.

Error! Bookmark not defined.

شکل 4-12: پخش بار به همین سیستم ترکیبی شامل فقط دیزل/زناچتر

Error! Bookmark not defined.

شکل 4-13: مقایسه هر سالانه تأمین تلفات بار برای سیستم های ترکیبی

defined.

Error! Bookmark not defined...

“case 1"

not defined.

Error! Bookmark not defined.

شکل 4-14: وضعیت شارژ باتری انواع ساختارهای سیستم ترکیبی در "case 1"

not defined.

Error! Bookmark not defined.

شکل 4-15: وضعیت شارژ باتری انواع ساختارهای سیستم ترکیبی در "case 1"

not defined.

Error! Bookmark not defined.

شکل 4-16: موقعیت جغرافیایی دانشگاه فنی و مهندسی دانشگاه محقق اردبیلی

not defined.

Error! Bookmark not defined.

شکل 4-17: ساختار سیستم ترکیبی اثری الکتریکی تک باس

Error! Bookmark not defined.

شکل 4-18: (الف) نمودار تابع خورشیدی و (ب) نمودار سرعت باد شهر اردبیل

not defined.

شکل 4-19: (الف) تا بار بادی واحد پانل خورشیدی (ب) تا بار بادی واحد توربین بادی و (ج) تفاوت بار ساعتی مورد مطالعه

Error!........LPSP=\% با PV/WT/batt/diesel

Book not defined.

Error! LPSP=\%با PV/WT/batt/diesel

Book not defined.

شکل 4-20: وضعیت شارژ باتری برای سیستم ترکیبی

Book not defined.

شکل 4-21: تولید ساعتی دیزل/زناچتر برای سیستم ترکیبی

Book not defined.

شکل 4-22: تولید ساعتی دیزل/زناچتر برای سیستم ترکیبی

Book not defined.
شکل 4-22: وضعیت شارژ باتری برای سیستم ترکبی

Bookmark not defined.

شکل 4-23: تولید ساعتی دیزلژنراتور برای سیستم ترکبی

Bookmark not defined.

شکل 4-24: شاخص LOLE برای سیستم ترکبی

Bookmark not defined.

شکل 4-25: شاخص LOEE برای سیستم ترکبی

Bookmark not defined.
فصل اول:
کلیات پژوهش
در حال حاضر جمعیت زیادی در سراسر جهان در مناطقی نظیر روستاهای کوچک و یا جزایر دور از خشکی به برق شبکه دسترسی ندارند (Mohammed et al., 2014). گسترش شبکه برق به مکان‌های جدا از شبکه با توجه به شکل پراکندگی جمعیت و زمین‌های ناهموار، غیرعملی و غیراقتصادی است (Salas et al., 2015). ریزشبکه‌های متشکل از انواع منابع انرژی کوچک به‌طور رویند روش برای تأمین بارهای محلی هستند. آنها را می‌توان به عنوان یک ریزسیستم کنترل‌پذیر تولید توان که بیشتر از منابع تجدیدپذیر انرژی هستند در نظر گرفت. ریزشبکه‌ها برای اولین بار توسعه کنسرسیوم راولی فناوری برای افزایش قابلیت اطمینان برق CERTS (مطرح شد که آن را به عنوان یک مجموعه انعطاف‌پذیر برای افزایش قابلیت اطمینان تولیدی به حساب می‌آورد. باوجود اینکه ریزشبکه‌ها به نازگی مورد توجه قرار گرفتند ولی یک مفهوم قدمی‌دارند. اگر به امواج تحولات صنعت برق توجه کنیم، تمام سیستم‌های قدرت از هم جدا بوده‌اند. اولین نبودگاه‌های جهان به‌صورت بخار در لندن و مه‌کی در سال 1882 آغاز به کار کرده‌اند که هدف آنها تولید برق توسط زنتراتورهای DC برای تأمین بارهای محلی بوده است (Hina Fathima et al., 2015). از این رو ریزشبکه‌ها بسیار شبیه سیستم‌های اولیه تولید برق برای تأمین مصرف محلی می‌باشند.

در سیستم‌های ترکیبی انرژی الکتریکی معمولاً از دو یا چند منبع انرژی تجدیدپذیر استفاده می‌شود که در کنار افزایش کارایی سیستم باعث تعادل بیشتر در تأمین انرژی می‌شوند. علت تمرکز بیش از

1 Consortium for Electricm Reliability Technology Solutions
مواد تولید نیروگاه‌های بزرگ، با ایجاد تکنولوژی‌های جدید، می‌تواند در سطح تولید نیروگاه‌های بزرگ، بهبود و بهره‌برداری از آن‌ها در صنعت تولید برق و فناوری‌های بازیابی انرژی بهبود یابد. از این رو، انجام کاربردی‌های بهینه‌سازی از موضوعات تازه برای پژوهش در این زمینه هستند.

1-2- منابع تجدیدپذیر انرژی

استفاده از مولدهای کوچک برای تولید برق بعد از ایجاد تکنولوژی‌های جدید، باعث ایجاد تکنولوژی‌های جدید در مقابل کوچک و ایجاد تجدید بازار در صنعت برق و مسائل زیست محیطی، باعث مطرح شدن مجدد این مولدها در صنعت تولید برق شده است. در پیrance از
کشورهای جهان اهداف راهبردی به منظور توسعه انرژی های تجدیدپذیر تدوین و سیاست گذاری های لازم برای سال های آتی انجام شده است. در این رابطه کشورهای توسعه یافته در اروپا در کمیسیون بدين منظور تأمین ۲۰ درصد از نیازهای انرژی خود را از منابع انرژی های تجدیدپذیر تا سال ۲۰۲۰ به عنوان هدف تدوین نموده‌اند. با تدوین سیاست گذاری در ایران پیشنهای متعدد به کشورهای آن در سال ۲۰۲۰ در ایران نیز سهم منابع تجدیدپذیر از تأمین انرژی الکتریکی حداقل به ۱۵ درصد برسد. لذا با توجه به محدودیت سوخت های فسیلی که پیشبینی شده در آینده نزدیک به ادامه می‌رود، این موضوع بسیار حائز اهمیت بوده و توسعه انرژی های تجدیدپذیر منابع اقتصادی و اجتماعی مختلفی را برای کشورها به‌همراه دارد. علاوه براین فقدان زمینهای زیست‌محیطی خود از جنبه‌های مثبت منابع تجدیدپذیر انرژی می‌باشد.

۱- سیستم‌های ترکیبی انرژی الکتریکی

برای یک سیستم ترکیبی تأمین انرژی الکتریکی که در حالت جدا از شبکه قرار دارد، اجرای سیستم ترکیبی به چهار دسته تقسیم می‌شوند. این چهار دسته شامل منابع تجدیدپذیر انرژی الکتریکی، منابع پشتیبان تأمین انرژی، سیستم‌های ذخیره‌سازی انرژی الکتریکی و بار است. همچنین با توجه به نوع AC و بودن و سطوح و تغییرهای متفاوت اجزا، لازم است از مدل‌های الکترونیکی قدرت استفاده شود. حالت‌های عملکرد سیستم‌های قدرت ترکیبی شامل منابع تجدیدپذیر عموماً به دو دسته کلی تقسیم می‌شوند (Kaundinya et al., 2009):

- سیستم‌های قدرت جدا از شبکه:

شبکه قدرت محلی که به دلیل موقعیت جغرافیایی و دور بودن از شبکه عمومی، به دلیل غیراقتصادی بودن احداث خطوط انتقال، یک سیستم کاملاً مستقل از شبکه می‌باشد. این گونه سیستم‌ها
عموماً شامل یک یا چند منبع انرژی تجدیدپذیر (بادی، خورشید، بیوماس و ...) می‌باشد. معمولاً به منظور افزایش قابلیت اطمینان در این گونه از سیستم‌های تأمین انرژی الکترینی، از واحدهای ذخیره‌ساز انرژی نیز استفاده می‌شود.

سیستم‌های قدرت منصل به شیبکه:

در این نوع سیستم‌های قدرت از شبکه عمومی به عنوان پشتیبان افتاده می‌گردد. استفاده از این سیستم‌ها نیز برای مناطقی که پتانسیل تولید انرژی توسط یکی از منابع تجدیدپذیر را دارند باشد بسیار مناسب است.

6- اهداف پژوهش

هدف از این پژوهش مدیریت بهینه یک سیستم ترکیبی انرژی الکترینی در حالت جدا از شبکه برای تأمین تقاضای بار مصرف کننده می‌باشد. در انتخاب اجزای ساختار سیستم ترکیبی از بین منابع مختلف انرژی تجدیدپذیر و روشهای گوناگون ذخیره‌سازی انرژی الکترینی، اجزای جوان توربین بادی، سیستم فتوولتاییک، باتری و دیزلژنراتور به عنوان اینکه در اثر مناطق جغرافیایی قابلیت اجرایی داشته و در دسترس هستند، مدل‌سازی گرفته‌اند. انتخاب اجزای مناسب این اجرای جهت بهره‌برداری از سیستم ترکیبی انرژی الکترینی را داشته باشد، یکی از اهداف این پژوهش است. همچنین با توجه به اختلالگی کم گام زمانی یک ساعتی (Bekker, 2007) از این گام زمانی برای تجزیه و تحلیل داده‌ها استفاده شده است. به طور کلی اهداف زیر در این پژوهش دنبال شده است:

- انجام بهینه اجرای سیستم ترکیبی انرژی الکترینی در حالت جدا از شبکه برای تأمین تقاضای بار پیش‌بینی شده و با استفاده از مقدار سرعت باد و تابش خورشید پیش‌بینی شده، مشخص
شده است. علاوه بر انداده بهینه اجزای سیستم ترکیبی انرژی الکتریکی، انداده بهینه اجزای برای شرایط استفاده از تک منابع یا سایر ساختارهای ممکن در ترکیب این اجزا با هم مشخص شده و نتایج با هم مقایسه شده‌اند.

علاوه بر استفاده از روش‌های جستجوگر ۱ برای انتخاب انداده بهینه اجزا، با استفاده از یک روش فرا ابتکاری و ترکیب روش‌های ریاضی و جستجوگر انداده بهینه اجزا مشخص شده و نتایج با روش معمول استفاده شده در سایر پژوهش‌ها مقایسه شده است.

علاوه بر انداده بهینه اجزا، پخش بار بهینه بین اجزای انتخاب‌کننده سیستم ترکیبی که باعث به حداقل رسیدن هزینه بهره‌برداری می‌شود، به ازای هر ساعت مشخص شده است.

با استفاده از داده‌های اقتصادی بازار ایران و همچنین مقادیر نقض‌های بار، تابش خروشید و سرعت باد ساعتی سالانه، یک سیستم ترکیبی انرژی الکتریکی برای دانشکده فن و مهندسی دانشگاه محقق اردبیلی پیشنهاد شده است.

۱-۵-۱ ساختار پایان‌نامه

در این پایان‌نامه پس از ارائه مقدمات در فصل اول، بقیه فصل‌ها به شرح زیر تدوین شده‌اند:

فصل دوم: بیشینه تحقیق

در این فصل به معرفی اولیه و کلی از موضوعات مورد بحث محققان در زمینه سیستم‌های انرژی الکتریکی از طریق مرجع‌دهی به مقالات پرداخته‌شده است. ضمن معرفی مباحث مختلف، ساختارهای مختلف سیستم‌های ترکیبی از بین انواع ساختارهای کاربردی معرفی و عملکردشان بررسی

۱ Heuristic
شده است. در این فصل سعی بر این بوده تا جزئیات پژوهش‌های انجام شده مورد تجزیه و تحلیل قرار گیرند.

فصل سوم: مدل سازی اجزا و ساختار سیستم ترکیبی انرژی الکتریکی
در این فصل عامل‌کرد اجزای سیستم ترکیبی قبل از اتصال به هم بررسی، مزایا و معایب و نوع فرمول‌بندی توان تولیدی اجرا ارائه شده است. بیشتر تمرکز در این فصل بر روی اجزای سیستم ترکیبی انرژی الکتریکی مورد مطالعه در این پایان‌نامه است. در ضمن نحوه فرمول‌بندی مسائل بهینه‌سازی و روش حل مسائل در این فصل مورد تجزیه و تحلیل قرار گرفته است.

فصل چهارم: نتایج حاصل از شبیه‌سازی
نتایج حاصل از شبیه‌سازی یک سیستم نمونه در ستایش‌های مختلف در این فصل مورد تجزیه و تحلیل قرار گرفته است. در ستایش‌های اول مدرکت بهینه فقط از لحاظ پخش بار و در ستایش‌های دوم با انتخاب اندازه بهینه اجرا نتایج در حالت‌های مختلف بهره‌برداری با یکدیگر مقایسه شده‌اند. همچنین در ستایش‌های سوم با استفاده از داده‌های واقعی، یک سیستم ترکیبی انرژی الکتریکی برای دانشکده فنی و مهندسی دانشگاه محقق اردبیلی پیشنهاد شده است.

فصل پنجم: نتیجه‌گیری و پیشنهادات
در این فصل خلاصه‌ای از نتایج فصل چهار مورد تجزیه و تحلیل قرار گرفته و در ادامه پیشنهادات برای پیشرفت کار انجام شده در این پایان‌نامه ارائه شده است.
فصل دوم:
پیشینه تحقیق
2-1- مقدمه

با توجه به ساختار یک سیستم تولید پراکنده انرژی، مباحث مختلفی مورد مطالعه محققان در این زمینه قرار گرفته است. این مطالعات هم در زمینه ارتقای کارآیی اجزای سیستم ترکیبی از قبیل افزایش بازده و کاهش هزینه منابع تولید انرژی و مبادله و نیز ادوات حفاظتی و کنترلی و هم در زمینه مباحث استفاده از منابع موجود در اقتصادی ترین حالت ممکن از نظر پخش بار و اندازه بهینه اجرای بوده است.

در کنار مطالعات اندیه بهینه و پخش بار، بررسی انواع تقاضای بار و تولید توان پیش‌بینی شده و غیرقابل بهینه و همچنین موضوعات بازار برق و پاسخگویی بار در سیستم‌های ترکیبی برای دو حالت جدا از شبکه و منصل به شبکه نیز مورد توجه قرار گرفته‌اند. با توجه به موضوع پایان‌نامه، در این مطالعه مباحث مربوط به مدیریت انرژی از نظر اندیه بهینه اجرای پخش بار بهینه برای تأمین تقاضای بار در اقتصادی ترین حالت ممکن برای یک سیستم ترکیبی انرژی الکتریکی در حالت جدا از شبکه با استفاده از داده‌های پیش‌بینی شده و بررسی شده است.

2-2- پخش بار بهینه

در مرجع (Tazvinga et al., 2015) نویسندگان یک سیستم ترکیبی شامل سیستم فتوولتاییک،
Abstract:
Issues related to hybrid power systems is among the issues that are of interest to researchers in the field of power systems. Hence in this Thesis, a hybrid power system in off-grid mode is studied from the perspective of optimal management. Photovoltaic systems and wind turbines as renewable energy sources with predicted production based on solar radiation and wind speed in the region have been considered. Diesel generators and battery respectively backup systems and energy storage systems are used. For solving the optimization problem in addition to the other methods that used in other researchs to determine the optimal size components, an innovative approach by combining heuristic Moth-flame algorithm and mathematical quadratic programming algorithm is used; so that the selection of the optimal size of components by Moth-flame algorithm and optimal power flow in during operation that is a part of the process of determining the optimal size of the components quadratic programming algorithm is done. Results have been analysis in several scenarios so that in each scenario, different conditions of operation of the hybrid system is investigated. By running code in MATLAB software and compare the results the effectiveness of the method presented in this thesis is proven to improve results. Also by using the annual hourly data, The optimal size of the components of a hybrid power system to meet the electrical demand of Faculty of Technical and Engineering of Mohaghegh Ardebili University as a practical study has been found and The possibility of studying on indicators of reliability of the hybrid power system is provided.

Keywords: hybrid power system, Product management, optimal size, optimal power flow, Moth-flame algorithm, quadratic programming algorithm
University of Mohaghegh Ardabili

Faculty of Technical and Engineering

Department of power engineering

Thesis submitted in partial fulfilment of the requirements for the degree of
M.Sc. in ELECTRICAL ENGINEERING

Title:
Optimal Energy Management of a Hybrid Power Supply System for Off-Grid
Applications with Moth-Flame Optimization Algorithm

Supervisor:
SeyedJalal SeyedShenava (Ph. D)

Advisor:
Hossein Shayeghi (prof)

By:
Navid AfsariArdabili

November – 2016