دانشکده فنی مهندسی
گروه آموزشی عمران
پایان‌نامه برای دریافت درجهی کارشناسی ارشد
در رشته‌ی عمران گرایش زلزله

عنوان:

مدل رفتاری میانقاب‌های بازی در قاب‌های فولادی بر مبنای مود خرابی حاکم

استاد راهنما:

دکتر کاظم شاکری

استاد مشاور:

دکتر محبت‌سهم‌محمی

پژوهشگر:

افسانه صالحیان

شهریور 1394
نام خانوادگی دانشجو: صالحیان

عنوان پایان‌نامه: مدل رفتاری میانقاب‌های بنایی در قاب‌های فولادی بر مبنای مود خرابی حاکم

<table>
<thead>
<tr>
<th>استاد راهنما: دکتر کاظم شاکری</th>
</tr>
</thead>
<tbody>
<tr>
<td>استاد مشاور: دکتر محشی محبی</td>
</tr>
</tbody>
</table>

مقاطع تخصصی:

- کارشناسی ارشد

<table>
<thead>
<tr>
<th>رشته: عمران</th>
</tr>
</thead>
<tbody>
<tr>
<td>دانشگاه: محقق اردبیلی</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>گراش: زلزال</th>
</tr>
</thead>
<tbody>
<tr>
<td>مقطع: 130</td>
</tr>
<tr>
<td>تعداد صفحات: 139/4</td>
</tr>
<tr>
<td>تاریخ دفاع: 22/6/1394</td>
</tr>
</tbody>
</table>

چکیده: میانقاب‌های اجری غیر مسلح، بطور گسترده‌ای در ساختمان‌ها به عنوان دیوار برهم‌بندی ساختمان‌ها و جدایکننده فضاهای داخلی مورد استفاده قرار می‌گیرند. وجود میانقاب در یک ساختمان باعث تغییرات مقاومت، سختی، بریزودی و بطور کلی عملکرد لرزه‌ای ساختمان می‌شود. به علت وجود نیروی اندرکنشی بین قاب و میانقاب، ظرفیت باربری و سختی قاب مرکز به قاب تنها افزایش می‌یابد. معمولاً در فرآیند تحلیل و طراحی ساختمان‌های فولادی صرفه به صورت قاب‌های متشکل از اعضای اصلی سازه ای از قابل تیرگی، ستون‌ها و اتصالات در نظر گرفته شده و از نقش میانقاب در روند تحلیل و طراحی ساختمان‌ها و توجه می‌شود.

بررسی‌های قبلی در خصوص ساختمان‌های موجود در کشور خصوصاً ساختمان‌های نیم‌اسکلت نشان داده است که وضعیت میانقاب‌های موجود در کشور در شرایط کاملی متفاوتی با فرضیات مدل‌های رفتاری موجود در آن‌ها همراه به تحقیقات قبلی دارد که عموماً در خارج از کشور توسعه یافته‌اند. لذا شناسایی این پارامترها متغیر و ارائه مدل جامع رفتاری که تاثیر این عوامل را به صورت جامعی در برگیرد، هدف این تحقیق قرار گرفته است.

مطالعات انجام گرفته در این تحقیق را می‌توان به دو بخش کلی تقسیم نمود: در بخش اول با استفاده از نرم‌افزار ABAQUS به بررسی پارامترهای مؤثر در رفتار قاب مرکب پرداخته شده است.

در بخش دوم با چاپ‌گذاری کردن میانقاب با دستک فشاری، مدلی بیشوهای می‌شود که سعی شده است نواصع مدل‌های پیشین را با دقت هر کد. این مدل شامل جند بارامتر و نقطه کلیدی شامل سختی اولیه، نقطه ترک - خورگی، سختی ناپیدا، ظرفیت پیشینه می‌باشد.

کلید واژه‌ها: دستک فشاری، قاب فولادی، مدل جنگلی، میانقاب بنایی
<table>
<thead>
<tr>
<th>عنوان</th>
<th>صفحه</th>
</tr>
</thead>
<tbody>
<tr>
<td>کلیات پژوهش</td>
<td>2</td>
</tr>
<tr>
<td>1-1. مقدمه</td>
<td>2</td>
</tr>
<tr>
<td>1-2. ضرورت مطالعه</td>
<td>2</td>
</tr>
<tr>
<td>1-3. هدف از انجام پژوهش حاضر</td>
<td>3</td>
</tr>
<tr>
<td>1-4. مراحل انجام پژوهش و آراش فصول</td>
<td>4</td>
</tr>
<tr>
<td>مروری بر مطالعات انجام شده</td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td>Error! Bookmark not defined.</td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td>Error! Bookmark not defined.</td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td>Error! Bookmark not defined.</td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td>Error! Bookmark not defined.</td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td>Error! Bookmark not defined.</td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td>Error! Bookmark not defined.</td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td>Error! Bookmark not defined.</td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td>Error! Bookmark not defined.</td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td>Error! Bookmark not defined.</td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td>Error! Bookmark not defined.</td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td>Error! Bookmark not defined.</td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td>Error! Bookmark not defined.</td>
<td>Error! Bookmark not defined.</td>
</tr>
</tbody>
</table>
بناهای کاملاً مختلف

- مقدمه

- خلاصهای از مدل‌های رفتاری نرم‌افزار ABAQUS

- رفتار غیر خطی در سازه ها

- تحلیل غیر خطی

- معیارهای گسیختگی و همگرایی جهت آنالیز
حسیب سنجی به پارامترها

Error! Bookmark not defined. .. 1-5
Error! Bookmark not defined. .. 2-5
Error! Bookmark not defined. .. 1-2-5
Error! Bookmark not defined. .. 2-2-5
Error! Bookmark not defined. .. 3-2-5
Error! Bookmark not defined. .. 1-3-2-5
مدل پیشنهادی

Error! Bookmark not defined. ... 1-6

Error! Bookmark not defined. ... 6

Error! Bookmark not defined. ... 2-6

Error! Bookmark not defined. ... 1-2-6

Error! Bookmark not defined. ... 2-2-6

Error! Bookmark not defined. ... 3-2-6

Error! Bookmark not defined. ... 4-2-6

Error! Bookmark not defined. ... 2-6

نتیجه گیری و پیشنهادات

1-7

120

Error! Bookmark not defined. ... 2-7
فارسی

صفحه

عنوان

شکل ۱-۲: قید قطری معادل برای مدل‌سازی میانقاب....

شکل ۲-۲: مدل زاریک برای مدل‌سازی میانقاب‌پذیری....

شکل ۳-۲: مدل مدن و همکاران برای مدل‌سازی میانقاب....

شکل ۴-۲: تغییرات عرض متوسط معادل در قاب‌های مارک....

شکل ۵-۲: مدل سه قبیل الدخانی و همکاران....

شکل ۶-۲: تخریب میانقاب‌های محیطی ساخته‌شده در زلزله ۲۰۰۳ ترکیه....

شکل ۶-۲: خصائص به دیوار خارجی ساختمان، جنگل‌هه ملاحظه می‌شود....

شکل ۶-۲: ذخایر ناشی از خرابی دیوارهای جدید....

شکل ۶-۲: بیمارستان یوپرو که به دلیل سیاله طبقه نرم آسیب دید....

شکل ۶-۲: مقایسه بیشینه تغییر مکان نسبی طبقات در قاب‌های چهار طبقه میانقاب‌دار و قاب‌های شامل بازگشادن طبقه اول در محدوده خجالت تحت رکوردهای طبقه (الف): طبس؛ ب) ناغان؛ ج) السنترو!

شکل ۶-۲: مقایسه بیشینه تغییر مکان نسبی طبقات در قاب‌های هشت طبقه میانقاب‌دار و قاب‌های شامل بازگشادن طبقه اول در محدوده خجالت تحت رکوردهای طبقه (الف): طبس؛ ب) ناغان؛ ج) السنترو!

شکل ۶-۲: شکست بریشی ستون به دلیل وجود دیوار میانقاب....

شکل ۶-۲: جداسازی قاب از میانقاب....

شکل ۶-۲: مقایسه رفتار قاب خالی و قاب مارک....

شکل ۶-۲: کن در خرابی در قاب مارک....

شکل ۶-۲: سنگواره ستون کوتاه در قاب مارک....

شکل ۶-۲: نحوه توزیع نتش در قاب مارک....

شکل ۶-۲: مود شکست گوشه....

شکل ۶-۲: مود شکست بریشی لغزشی....

شکل ۶-۲: مود شکست فشاری قطری....
شکل 9-3: مود شکست ترک قطعی
شکل 10-3: مود گیسوخی قاب
شکل 11-3: نمودار نیرو - جابجایی قاب مركب
شکل 12-3: نشانه مرکزی میانقاب
شکل 13-3: مدل قاب با مهارنده راننده برای شکست برشي لغزشي
شکل 14-3: قید قطعی معادل
شکل 15-3: مقایسه نتایج آزمایشگاهی با مدل میناستون
شکل 16-3: مودهای خرایی بر اساس نظریه وود
شکل 17-3: تفاوت در مکانیزم انتقال بار جانبي به علت وجود پرکندندي داخل قاب
defined.
شکل 18-3: منحنی تنش کرون پرای قید قطعی معادل در
شکل 19-3: حل مستقیم در مقایسه با روش نیوتن رافسون
شکل 20-3: گام های پی بهگذاری
شکل 21-3: تقسیم پارگرایی به قسمت های مختلف
شکل 22-3: نمودار تنش - کرون مختلف
شکل 23-3: طراحی تسلیم رفتارهای مختلف
شکل 24-3: مدل خطي دراگر پراگر و پارامترهای تعريف
شکل 25-4: حدود مقدایرK در صفحه تنش های اصلي
defined.
شکل 26-4: چگونگی ساخت شدگی در مدل دراگر پراگر و تعريف زوايه اتساع
شکل 27-4: منحنی تنش - کرون مختلف
شکل 28-4: تغییر تنش در مدل دراگر پراگر و تعريف زوايه اتساع
defined.
شکل 29-4: نحوه انجام آزمایش سه محوری كشتي و فشاری
شکل 30-4: توابع تسلیم در مدلهاي خطي، هيبيرولوپک و عمومی
شکل 31-4: اتوان آلمان های Solid
شکل 32-4: تعادل نقاط برای انتگرال گري عددی در المان ها
شکل 33-4: مدلسازی ميكرو و ماکرو
شکل 34-4: مدل آزمایشگاهی
شکل 35-4: مشخصات سفال
شکل 36-4: منحنی تنش - کرون مشور مصالح بنایي الف) افقی، ب) قائم
defined.
شکل 37-4: مدل قاب پر شده با مصالح بنایي در نرم افزارABAQUS
شکل 38-4: نیروهای برخورد در سطح تحمیل
شکل 39-4: نمو برای المان های تامس بين آخرها
شکل 40-4: نمو برای المان های تامس بين آخرها
شکل 41-4: نمو برای المان های تامس بين آخرها
شکل 42-4: نمو برای المان های تامس بين آخرها
شکل 43-4: نمو برای المان های تامس بين آخرها
شکل 44-4: نمو برای المان های تامس بين آخرها
شکل 45-4: نمو برای المان های تامس بين آخرها
شکل 46-4: نمو برای المان های تامس بين آخرها
شکل 47-4: نمو برای المان های تامس بين آخرها
شکل 48-4: نمو برای المان های تامس بين آخرها
شکل 49-4: نمو برای المان های تامس بين آخرها
شکل 50-4: نمو برای المان های تامس بين آخرها
شکل 51-4: نمو برای المان های تامس بين آخرها
شکل 52-4: نمو برای المان های تامس بين آخرها
شکل 53-4: نمو برای المان های تامس بين آخرها
شکل 54-4: نمو برای المان های تامس بين آخرها
شکل 55-4: نمو برای المان های تامس بين آخرها
شکل 56-4: نمو برای المان های تامس بين آخرها
شکل 57-4: نمو برای المان های تامس بين آخرها
شکل 58-4: نمو برای المان های تامس بين آخرها
شکل 59-4: نمو برای المان های تامس بين آخرها
شکل 60-4: نمو برای المان های تامس بين آخرها
شکل 61-4: نمو برای المان های تامس بين آخرها
شکل 62-4: نمو برای المان های تامس بين آخرها
شکل 63-4: نمو برای المان های تامس بين آخرها
شکل 64-4: نمو برای المان های تامس بين آخرها
شکل 65-4: نمو برای المان های تامس بين آخرها
شکل 66-4: نمو برای المان های تامس بين آخرها
شکل 67-4: نمو برای المان های تامس بين آخرها
شکل 68-4: نمو برای المان های تامس بين آخرها
شکل 69-4: نمو برای المان های تامس بين آخرها
شکل 70-4: نمو برای المان های تامس بين آخرها
شکل 71-4: نمو برای المان های تامس بين آخرها
شکل 72-4: نمو برای المان های تامس بين آخرها
شکل 73-4: نمو برای المان های تامس بين آخرها
شکل 74-4: نمو برای المان های تامس بين آخرها
شکل 75-4: نمو برای المان های تامس بين آخرها
شکل 76-4: نمو برای المان های تامس بين آخرها
شکل 77-4: نمو برای المان های تامس بين آخرها
شکل 78-4: نمو برای المان های تامس بين آخرها
شکل 79-4: نمو برای المان های تامس بين آخرها
شکل 80-4: نمو برای المان های تامس بين آخرها
شکل 81-4: نمو برای المان های تامس بين آخرها
شکل 82-4: نمو برای المان های تامس بين آخرها
شکل 83-4: نمو برای المان های تامس بين آخرها
شکل 84-4: نمو برای المان های تامس بين آخرها
شکل 85-4: نمو برای المان های تامس بين آخرها
شکل 86-4: نمو برای المان های تامس بين آخرها
شکل 87-4: نمو برای المان های تامس بين آخرها
شکل 88-4: نمو برای المان های تامس بين آخرها
شکل 89-4: نمو برای المان های تامس بين آخرها
شکل 90-4: نمو برای المان های تامس بين آخرها
شکل 91-4: نمو برای المان های تامس بين آخرها
شکل 92-4: نمو برای المان های تامس بين آخرها
شکل 93-4: نمو برای المان های تامس بين آخرها
شکل 94-4: نمو برای المان های تامس بين آخرها
شکل 95-4: نمو برای المان های تامس بين آخرها
شکل 96-4: نمو برای المان های تامس بين آخرها
شکل 97-4: نمو برای المان های تامس بين آخرها
شکل 98-4: نمو برای المان های تامس بين آخرها
شکل 99-4: نمو برای المان های تامس بين آخرها
شکل 100-4: نمو برای المان های تامس بين آخرها
شکل 2-1: نمودار چگونگی اعمال مقاومت برای ملایم در درآمدهای تاساسی

شکل 2-2: شیب‌بندی سازه و اجرای

شکل 2-3: نمودار برای انتخاب و تغییر مکان

شکل 2-4: ترک های ایجاد شده در مصرف

شکل 2-5: مقایسه رفتار واقعی و نرم افزاری ترک های ایجاد شده در میانگین

شکل 2-6: وضعیت تنگ در میانگین

شکل 2-7: مدل مورد هدف

شکل 2-8: قاب خالی و قاب مرکب

شکل 2-9: قاب خالی در

شکل 2-10: مرزی اصطکاک ملات

شکل 2-11: مرزی اصطکاک ملات

شکل 2-12: برنامه سیستمی ارتفاع بدن

شکل 2-13: برنامه سیستمی ارتفاع بدن

شکل 2-14: مقایسه ظرفیت اصطکاک قوی و ضعیف

شکل 2-15: مقایسه ظرفیت اصطکاک قوی و ضعیف

شکل 2-16: برنامه زاویه اصطکاک ملات

شکل 2-17: برنامه زاویه اصطکاک ملات

شکل 2-18: برنامه ضریب اصطکاک ملات در قاب ضعیف

شکل 2-19: برنامه ضریب اصطکاک ملات در قاب ضعیف

شکل 2-20: برنامه ضریب اصطکاک ملات در قاب ضعیف

شکل 2-21: برنامه ضریب اصطکاک ملات در قاب ضعیف
شکل 1: مدل پیشنهادی

شکل 2: نحوه مدلسازی قاب مزکب به روش دستک معادل در نرم‌افزار ABAQUS

شکل 3: قاب خالی و میانقاب جدا شکل

شکل 4: هم ارز شدن سختی ال‌مان‌ها

شکل 5: مقایسه سختی با توجه به دیدگاه های مختلف

شکل 6: مقایسه سختی اولیه با روش پیشنهادی در نسبت ارتفاع به دهانه مختلف (قابل قوی)

شکل 7: مقایسه سختی اولیه با روش پیشنهادی در لایه LH/12 (قابل قوی)

شکل 8: مقایسه سختی اولیه با روش پیشنهادی در لایه F

شکل 9: مقایسه سختی اولیه با روش پیشنهادی در لایه LH

شکل 10: دستیابی به نقطه ترک خوردگی در مدل LH

شکل 11: دستیابی به نقطه ترک خوردگی در مدل F

شکل 12: دستیابی به نقطه ترک خوردگی در مدل LH

شکل 13: مقایسه مدل‌های پیشنهاد شده قبیل برای ظرفیت نهایی برای 2F

شکل 14: مقایسه مدل‌های پیشنهاد شده قبیل برای ظرفیت نهایی برای 3LH

شکل 15: مقایسه مدل‌های پیشنهاد شده قبیل برای ظرفیت نهایی برای LH/12
فهرست جداول

جدول ۱-۳: مقدار k_1 و k_2 در روش اسکافیدا (۲۰۱۴).

جدول ۲-۳: مقایسه آنین نامه‌ها در مباحث مربوط به میانقاب (تاپیشبور، جهارمین همایش ملی تگرگی بر آنین نامه طراحی ساختمانها در ورای زلزله استاندارد، ۲۰۰۰).

جدول ۳-۱: نامگذاری نشان‌های و نوع آنها در دستگاه مختصات کلی.

جدول ۳-۲: خصوصیات مصالح استفاده شده در مدل آزمایشگاهی (فلانگان، ۱۹۹۹؛ بانت، ۱۹۹۹).

جدول ۴۰۵: مشخصات مصالح بنایی

جدول ۴۰۵: مشخصات ملات

جدول ۴۶۱: سختی اولیه (kg/cm^2) به دست آمده از مدل پیشنهادی در نسبت ارتقاء به دهانه‌های مختلف در قاب قوی.

جدول ۴۶۲: سختی اولیه (kg/cm^2) به دست آمده از مدل پیشنهادی در نسبت ارتقاء به دهانه‌های مختلف در قاب ضعیف.

جدول ۴۶۳: نیروی تراک خوردنی (kg) در نسبت‌های ارتقاء به دهانه در قاب قوی.

جدول ۴۶۴: مقدار عرض موثر برای نسبت ارتقاء به دهانه مختلف و ضخامت میانقاب.

جدول ۵۶۴: مقدار S مقایسه

جدول ۶۶۶: مقایسه مقدار طرفت نهایی برای ضخامت و نسبت ارتقاء به دهانه مختلف میانقاب در قاب قوی.

جدول ۷۶۶: مقایسه مقدار طرفت نهایی برای ضخامت و نسبت ارتقاء به دهانه مختلف میانقاب در قاب ضعیف.
فصل 1:
کلیات پژوهش
مقدمه

میانقاب‌هایی اگر غیرمناسب به طور گسترده‌ای در ساختمان‌ها به عنوان دیوار پیرامونی ساخته‌اند و جدایشند، فضاهای داخلی مورد استفاده قرار می‌گیرند. وجود میانقاب‌های بی‌ساختار در یک ساختمان باعث تغییرات مقاومت، سختی، پراید و به طور کلی عملکرد لرزه‌ای ساختمان می‌شود. به علت وجود نیروی انرژی‌شکنی بین قاب و میانقاب، طرفینه باربری و سختی قاب مرکب نسبت به قاب دیگر افزایش می‌یابد. معمولاً در فرآیند تحلیل و طراحی، ساختمان‌های فولادی صرفاً به صورت قاب‌هایی متشکل از اعضای اصلی سازه‌ای از قبیل تیرها، ستون‌ها و اتصالات در نظر گرفته شده و از نقش میانقاب‌ها در رونده تحلیل و طراحی ساخته‌ای صرف‌نظر می‌شود.

1-2. ضرورت مطالعه

پانزده پرکندگی حتی اگر غیرسازه‌ای محسوب شوند، وقتی سازه تحت بار ناشی از زلزله شدید قرار می‌گیرد، تمایل به انرژی‌شکنی با قاب محيطی خود دارد. این انرژی‌شکنی می‌تواند برای عملکرد سازه مفید و یا مضر باشد. واضح است که میانقاب‌ها سختی و مقاومت سازه را پیش‌بینی و انجام می‌دهند، اما به طور هم‌زمان در نرمی ذاتی قاب می‌کاهند.

وجود میانقاب‌ید در یک یا چند دهانه و خالی مانند پنجه دهان‌ها سختی آن دهانه را چنان زیاد می‌کند که عدم‌ها نیروی زلزله جذب آن دهانه شده و پنجه دهان‌ها پی‌ارگی می‌شوند. در قاب‌های فولادی این نیروی تمرکز یافته موجب عكس عمل شدید میانقاب در پراید قاب شده و ستون‌ها در محل اتصال دچار فشار می‌شوند.

یکی دیگر از حالاتی نامناسب، دیوارهای کوتاه به‌ویژه که تا قسمت‌هایی از ارتفاع سازه ادامه یافتند. در این صورت قسمتی از ستون به مجاور دیوار است، تقیب‌آمیز به طور یکپارچه با دیوار عمل نموده و ارتفاع ستون کاهش یافته و در نتیجه سختی ستون سپیار افزایش می‌یابد. به تناسب این افزایش سختی، ستون متحمل نیروهای شدیدتری می‌شود. تجربه نشان داده است که یکی از دلایل مهم خرابی سازه‌های دارای میانقاب پیده‌های ستون کوتاه است.

1 Unreinforced Masonry Infill Wall
با توجه به موارد ذکر شده، در نظر گرفتن اثر میانگین بر رفتار سازه‌ها مشخص می‌شود؛ لذا در برخی از آینی‌نامه‌ها و پیش‌بینی‌های \(\text{UBC} \), FEMA و آینی‌نامه‌های منظر نمودن اثر میانگین‌ها در مرحله طراحی و بررسی عملکرد ارزش‌های سازه‌های EUROCODE, ASCE و NEHRP، رفتار‌های میانگی مورد توجه قرار گرفتند. در نظر گرفتن ضوابط و مقررات خاص آن‌ها، می‌توان به نیازمندی است. مدل‌های رفتاری که در پژوهش‌های بیشین و آینی‌نامه‌ها برای شیب‌سازی میانگین‌ها ارائه شده است، عموماً مبتنی بر استفاده از یک دستک معادل با سختی و ظرفیت نهایی معنی‌داره، می‌باشد. این مدل‌ها بعضاً دارای تفاوت‌هایی با ساده‌سازی‌های در مدل‌های کنونی که به صورت خلاصه در زیر به آن‌ها اشاره می‌شود:

- محل مه‌کارانه‌کارانه بودن در تخمین رفتار کلی سازه
- عدم مفاهیم‌کاربردشده بودن در تخمین خرابی‌های موضعی
- عدم در نظر گرفتن اثر باز تقلی در مدل رفتاری میانگین
- عدم اعمال اثرات گیربادی تیر و ستون
- نامشروع بودن اثر اتصال بین قاب و میانگین
- عدم در نظرگرفتن اثر ترتیب غیرخطی شدن قاب و میانگین
- در این پژوهش سعی بر آن است تأثیر عوامل پیش‌گرفته بر رفتار اندک‌کننده قاب‌های بتن مسلح و میانگین‌ها بررسی و در حد امکان بین‌شناخته‌های برای اصلاح مدل‌های موجود ارائه شود.

1-3 هدف از انجام پژوهش حاضر

به طور کلی، هدف از این تحقیق را می‌توان در دو قسمت پیشکار کرد:
- بررسی رفتار میانگین اجرای غیرمسحل در قاب فولادی تحت اثر نیروهای داخل صفحه
- ارائه مدل رفتاری برای قاب مركب بر اساس عوامل خرابی حاکم

در روابط ارائه شده توسط پژوهشگران قبلاً نظر به شرایط هندسی و گیربادی همجنگ خصوصیات مصالح، روایتی ارائه شده که می‌توان گفت میانگین‌های از مودهای خرابی است و همیشه در جهت اطمینان عمل نمی‌کند. ضمن آنکه بیشترین تمرکز در تعبیه ظرفیت نهایی میانگین‌ها بوده است نتایج یک مدل رفتاری بررسی‌های قبلی در خصوص ساختمان‌های موجود در کشور، خصوصاً ساختمان‌های نیم اسکلت نشان داده است که وضعیت
میانکاب‌های موجود در کشور شرایط کامل‌اً متفاوتی با فرضیات مدل‌های رفتاری موجود در آینده‌نامه‌ها و تحقیقات قبلی دارد که عموماً در خارج از کشور توسعه یافته‌اند. از نهاده‌نامه تفاوت‌های موجود در مقداری تفاوت میانکاب‌ها در باربری تفاوت است این در حالی است که در ساختمان‌های با قاب‌های ضعیف یکسپری بزرگی از بار تلفی توسط میانکاب‌ها تحمل می‌شود و از این بار تلقی بايد بر مدل رفتاری میانکاب‌ها و اندرکنش آن‌ها که قاب بررسی شود.

با توجه به توضیحات فوق در این پژوهش سعی خواهد شد رابطه‌ای جامع و به صورت پارامتریک از رفتار میانکاب‌های بدون کمک تمامی موده‌های خرابی به صورت مجزا باشد و نحوه تعیین نقاط مختلف منحنی رفتاری شامل نقطه جدايش قاب از میانکاب، نقطه ترک‌خوردگی، خرابی و مفصل شدن اعضاء قاب و تأثیر آن بر پاسخ میانکاب‌ها و نهایتاً ظرفیت نهایی میانکاب معنی‌دار شود.

1-4- مراحل انجام پژوهش و آرايش فصول
مطالعه یا اشاره از 7 فصل ارائه شده است.

در فصل اول، مقدمه، کلیات و ضرورت‌های بررسی رفتار میانکاب در قاب‌های فولادی ارائه شده است.
در فصل دوم، موروری بر تحقیقات محققین در خصوص رفتار قاب‌های مرکب و مدل‌های ارائه شده برای مدل‌سازی میانکاب‌های مصالح بنایی به طور اجمالی ارائه شده است.
در فصل سوم، رفتار داخل صفحه قاب مرکب و اندرکنش در قاب و میانکاب، توزیع تنش در میانکاب و حالت‌های شکست داخل صفحه قاب مرکب تشريح شده است.

در فصل چهارم به طور خلاصه به معرفی نرم‌افزار مورد استفاده (ABAQUUS) پرداخته شده و به صورت مختصر مدل‌های رفتاری نرم افزار معرفی می‌شود. در انتهای این فصل مقایسه بین نتایج آزمایشگاهی و نتایج حاصل از مدل‌سازی نرم افزار به‌منظور تحقیق نتایج مدل عدیدی صورت می‌گیرد.
در فصل پنجم مدل سی‌سی‌دی قاب مرکب تحت اثر نیروهای داخل صفحه با روابط تحلیل استاتیکی غیرخطی فراخوانده مورد تحلیل قرار می‌گیرد و پارامترهایی نظیر چسبندگی و زاویه اصطکاک ملات، تغییر ابعاد و... حساسیت‌سنجی شده‌اند.
در فصل ششم با توجه به بررسی‌های پارامتریک انجام شده در فصل پنجم و نتایج آزمایشگاهی موجود به ارائه روابطی برای تشريح مدل رفتاری قاب مرکب پرداخته شده است. این مدل شامل شیب اولیه، نقطه ترک‌خورده‌گی، شیب نانویه، ظرفیت نهایی و شیب افت پس از بیشینه ظرفیت است.

فصل هفتم شامل نتیجه‌گیری و ارائه پیشنهادات است.
فصل 2:
مرورى بر مطالعات انجام شده
Family name: Salehian Name: Afsaneh

Title of thesis: Backbone Model for Masonry Infill Walls in Steel Frames Based on the Governing Failure Mode

Supervisor: Dr. Kazem Shakeri
Advisor: Dr. Mohtasham Mohebi

Graduate Degree: degree of M.Sc.
Major: Civil-Engineering Specialty: Earthquake
University: Mohaghegh Ardabili Faculty: Civil Engineering
Graduation date: 2015.09.13 Number of pages: 130

Abstract: Masonry infills walls are widely used in building construction because of structural and architectural reasons. Often civil engineers consider masonry infills as architectural elements and ignore them in structural analysis and design. However, it has been proven that infill walls can change the behavior of the structure, therefore it would not be sensible to ignore their significance in the analysis and the design of a structure.

Recent researches confirmed that conditions of most old structures in Iran are different from assumptions considered in the present models. As well, neglecting vertical loads and underestimate consideration of local effects of infill panels on columns are other defects of the present models.

This research is comprised of two distinct parts. In the first part, the effects of different parameters on the behaviour of masonry infilled Steel frames have been studied by ABAQUS software.

In the second part a multilinear strut model has been proposed to solve defects of previous models. The proposed model includes several parameters and key points including initial stiffness, cracking point, post cracking stiffness and maximum capacity.

Keywords: Steel Frame, Strut, Masonry infill, Multiliner Model
University of Mohaghegh Ardabili
Faculty of Civil Engineering
Department of Earthquake Engineering

Thesis Submitted in Partial Fulfillment of the Requirements for
The Degree of Master of Science (M.Sc.)

Title:
Backbone Model for Masonry Infill Walls in Steel Frames Based on the Governing Failure Mode

Supervisor:
Dr. Kazem Shakeri

Advisor:
Dr. Mohtasham Mohebi

By:
Afsaneh Salehian

August, 2015