پایان نامه برای دریافت درجه کارشناسی ارشد در رشته مهندسی کامپیوتر گرایش معماری کامپیوتر

عنوان:
مسیریابی تحمیل پذیری نقش در شبکه روی تراش با استفاده از الگوریتم کلونی مورچگان

استاد راهنما:
دکتر جواد جاویدان

استاد مشاور:
دکتر شهرام جمالی

پژوهشگر:
رحمان قهرمانی

تابستان 94
نام: رحمان

عنوان پایان‌نامه: مسیرپیام‌های تحلیل پذیری نقش در شیکه روان تراشی با استفاده از الگوریتم کلونی مورچگان

استاد راهنما: دکتر جواد جاویدان

استاد مشاور: دکتر شهروان جمالي

رختنده: مهندسی کامپیوتر

گرایش: معماري کامپیوتر

دانشگاه: محقق اردبیلی

دانشکده: فیزیک و مهندسی

تعداد صفحات: 83

تعداد مقاله: 94

تاریخ دفاع: 13/12/94

مشخصات: افزایش پیچیدگی مدارهای مجتمع و عدم مقباس‌پذیری گذارگاه‌های سنتی و روش نقطه به نقطه برای ارتباط بین اجزای داخل تراشی از یک سو و نیاز به جداسازی فعالیت محبوب‌محیطی و ارتباطی در تراشی‌های اسوزویی از سوی دیگر، مسیر پذیری قسمت‌های ارتباطی را به صورت پیوسته به تراشی سوق داده است. یکی از شاخص‌های اساسی برای دستیابی به پذیری قسمت‌های پیچیده امکان وقوع پذیری کلی در اثر عیوب‌های زمان ساخت یا پذیری طول عمر در طول زمان عمر متفق‌آمیز و همچنین پذیری که هر چگونه که علتی را تشکیل گیرند، و غیرقابل پیش‌بینی دارند و می‌توانند عملکرد سیستم را به شدت تحت تأثیر قرار دهند. بنابراین نیاز به نوعی از طراحی به‌وجود آمد که این‌گونه سیستم‌ها در برای پذیری کوتناگون دچار خرابی نشده و به‌کار خود ادامه دهند. این‌گونه طراحی‌ها علاوه بر پدیده کارآبی سیستم باید قابلیت پیاده‌سازی با هزینه‌های منطقی را نیز داشته باشد. از آنجا که کارآبی سیستم‌ها بر تراشی نیز همانند هر شیبکه میان ارتباطی دیگر، به‌طور گسترده‌ای وابسته به روش‌های مسیرپیام‌پذیر و بکار رفته در آنها می‌باشد. در تراشی‌های مبنی بر پذیری قسمت‌های اطلاعی از الگوریتمی با قابلیت تحلیل پذیری نقش روشنی کارآمد برای افزایش قابلیت اطمینان در برای پذیری نقش‌های دامنه گذاری می‌باشد. در این پایان‌نامه پس از مور‌های مفاهیم مربوط به شیکه ترتیب‌ها به‌روش الگوریتم‌های مسیرپیام‌پذیری تحلیل پذیری نقش‌ها در بررسی اشکال‌های دامنه پرداخته و دو الگوریتم مسیرپیامی برای تحلیل پذیری نقش‌های دامنه ارائه شده است که در روش اول از الگوریتم کلونی مورچگان و نحوه عملکرد آن‌ها در برخورداری با موانع استفاده شده است که در آن به بیان مراحل و خرای ابتدا بیان مراحل در گزینه شده‌اند. در ادامه، برای برای بررسی بیشتر روش‌های می‌توان یکپارچه‌سازی روش‌های ارائه‌ای که در ارائه‌ای الگوریتم‌های DyXY به‌کار گرفته شده‌اند در این خصوص طراحی بشرسازی نقش‌های دامنه لینک‌ها به‌روش ان‌جمعی و همچنین الگوریتم‌های آمیزه‌ای ارائه‌ای عملکرد بهتری در همه پارامترهای ارزیابی همچون تاخیر و قابلیت اعتماد نسبت به الگوریتم صفحه‌های دارد.

کلید واژه‌ها: شیکه بر تراشی، الگوریتم مسیرپیام‌پذیری تحلیل پذیری نقش، قابلیت اطمینان، الگوریتم مورچگان، ارتدخ.
فهرست مطالب

فصل اول: مقدمه

- 1-1 مقدمه .. 2
- 1-2 ساختار پایان نامه .. 4

فصل دوم: مروری بر مفاهیم اصلی شبکه برترانه

- 2-1 مقدمه .. 7
- 2-2 سیستم برترانه .. 7
- 2-3 چالش‌های موجود در سیستم‌های بر تراش و راهکارهای حل آنها 10
- 2-4 معماری شبکه برترانه .. 11
- 2-5 همبیندی .. 14
- 2-6 روش‌های راهگزینی ... 16
- 2-7 راهگزینی مداری .. 17
- 2-8 راهگزینی مستقیم .. 17
- 2-9 راهگزینی مستقیم VCT .. 18
- 2-10 راهگزینی خشی ... 18
- 2-11 کانال مجازی .. 19
- 2-12 کنترل جریان ... 20
- 2-13 الگوریتم مسیربرداری .. 21
- 2-14 الگوریتم مسیربرداری ـ VCT های یک الگوریتم ـ مسیربرداری 21
- 2-15 الگوریتم مسیربرداری دو مرحله‌ای ـ دو مرحله‌ای الگوریتم ـ الگوریتم مسیربرداری دو مرحله‌ای VCT ـ الگوریتم مسیربردا
فصل سوم: مروری بر تحمیل پذیری نقش در شبکه برترینه

۲۲- ۱- مقدمه
۲۴- ۲- اشکال، خطا و خرابی
۲۷- ۳- تحمیل پذیری در برابر انواع نقش‌ها در شبکه برترینه
۲۹- ۴- مروری بر مسیرهایی تحمیل پذیری نقش در شبکه برترینه
۳۰- ۴-۱- مسیرهای تحمیل پذیری نقش در شبکه برترینه دوبعدی
۳۹- ۴-۵- تبییص گیری

فصل چهارم: طراحی الگوریتم مسیریابی تحمیل پذیری نقش در شبکه روی تراشته

۵۱- ۴- ۱- مقدمه
۵۲- ۴- ۲- الگوریتم کلونی مورچگان
۵۳- ۴-۱- تاریخچه
۵۳- ۴- ۲- هوش دسته جمعی
۵۴- ۴- ۳- چگونگی یافتن کوتاه‌ترین مسیر توسط مورچگان
۵۷- ۴- ۳- مسیریابی تحمیل پذیری اشکال با استفاده از الگوریتم کلونی مورچگان
۵۸- ۴- ۱- مکانیزم آگاهی از خرابی
۵۹- ۴- ۲- مکانیزم جستجو برای مسیرهای کاندید
۶۰- ۴- ۳- مکانیزم انتخاب بهترین مسیر
۶۲- ۴- ۴- طراحی الگوریتم مسیریابی تحمیل پذیری اشکال
۶۶- ۴- ۵- تبییص گیری
فصل پنجم: پیاده‌سازی، شیب‌سازی، گزارش نتایج و تحلیل آن‌ها

۶۸- ۵-۱ مقدمه
۶۸- ۵-۲ معرفی شیب‌ساز
۷۰- ۵-۳ شرایط اعمال شده در شیب‌سازی
۷۱- ۵-۴ پیاده‌سازی الگوریتم‌های پیشنهادی
۷۱- ۵-۴-۱ پیاده‌سازی الگوریتم مسیریابی تحلیل‌بندی اشکال با استفاده از الگوریتم کلونی مورچگان
۷۱- ۵-۴-۲ پیاده‌سازی الگوریتم FCA_DyXY
۷۴- ۵-۵ نتیجه‌گیری

فصل ششم: جمع‌بندی، نتیجه‌گیری و پیشنهادها

۷۹- ۶-۱ جمع‌بندی
۸۰- ۶-۲ پیشنهادها برای ادامه پژوهش

فهرست منابع و مآخذ
فهرست جدول‌ها

<table>
<thead>
<tr>
<th>شماره و عنوان جدول</th>
<th>صفحه</th>
</tr>
</thead>
<tbody>
<tr>
<td>جدول ۲ - ۱: مقایسه معماری‌های ارتباطی سیستم بر تراثه</td>
<td>۱۱</td>
</tr>
</tbody>
</table>

د
فهرست شکل‌ها

<table>
<thead>
<tr>
<th>شماره و عنوان شکل</th>
<th>صفحه</th>
</tr>
</thead>
<tbody>
<tr>
<td>شکل ۱ - ۱: طراحی یک سیستم بر تراشیده</td>
<td>صفحه ۸</td>
</tr>
<tr>
<td>شکل ۲ - ۲: ساختار ارتباطی در سیستم بر تراشیده ال/آتصال نقطه به نقطه، ب/گزگاه مشترک</td>
<td>صفحه ۹</td>
</tr>
<tr>
<td>شکل ۲ - ۳: ساختار یک شبکه بر تراشیده تورا یا ۱۶ هسته</td>
<td>صفحه ۱۲</td>
</tr>
<tr>
<td>شکل ۲ - ۴: مدل یک مسیروراب</td>
<td>صفحه ۱۴</td>
</tr>
<tr>
<td>شکل ۲ - ۵: تداد آزاد همبندی های پیشنهاد شده برای شبکه بر تراشیده ال/آتصال دیوار، ب/ب‌سیار حدود، ج/مش.</td>
<td>صفحه ۱۶</td>
</tr>
<tr>
<td>شکل ۲ - ۶: کانال مجازی ال/کانال مجازی در مقابل کانال فیزیکی ب/کارایی کانال مجازی در جلوگیری از مستند شدن شبکه</td>
<td>صفحه ۲۰</td>
</tr>
<tr>
<td>شکل ۲ - ۷: نمونه‌ای از شرایط و فرایند پیست</td>
<td>صفحه ۲۱</td>
</tr>
<tr>
<td>شکل ۲ - ۸: چرخش های مجاز و غیرمجاز (خطوط نقطه‌بنی) در مسیرپایی چرخشی زوج-فرد</td>
<td>صفحه ۲۸</td>
</tr>
<tr>
<td>شکل ۲ - ۹: ساختار مسیروراب برای الگوریتم DyXY</td>
<td>صفحه ۲۹</td>
</tr>
<tr>
<td>شکل ۲ - ۱۰: ساختار مسیروراب DyAD</td>
<td>صفحه ۳۴</td>
</tr>
<tr>
<td>شکل ۳ - ۱: ترتیب تأثیر مفاهیم اشکال، خط و خرابی روی یکدیگر</td>
<td>صفحه ۳۴</td>
</tr>
<tr>
<td>شکل ۳ - ۲: مجموعه‌ای از سطوح دو بعدی در مسیرپایی سطحی - تطبیقی</td>
<td>صفحه ۴۶</td>
</tr>
<tr>
<td>شکل ۳ - ۳: نمونه‌ای از مسیرپایی بسته توسط روش مبتنی بر روش‌افزار</td>
<td>صفحه ۴۸</td>
</tr>
<tr>
<td>شکل ۳ - ۴: عنصر پردانشی خراب ب/ شبکه با مسیروراب خراب</td>
<td>صفحه ۵۲</td>
</tr>
<tr>
<td>شکل ۴ - ۱: رفتار جستجوگر نه مورچه‌ها برای یافتن غذا و چگونگی یافتن کوتاه‌ترین مسیر</td>
<td>صفحه ۵۵</td>
</tr>
<tr>
<td>شکل ۴ - ۲: مسیر مختلف الگوریتم مورچگان</td>
<td>صفحه ۵۶</td>
</tr>
<tr>
<td>شکل ۴ - ۳: رفتار مورچگان در برخوردار با مانع و فرازین متانتر با آن در مسیروراب</td>
<td>صفحه ۵۷</td>
</tr>
<tr>
<td>شکل ۴ - ۴: مصراده‌های لایه‌ای خراب و مسیروراب کاندید</td>
<td>صفحه ۵۸</td>
</tr>
<tr>
<td>شکل ۴ - ۵: شبیه کد الگوریتم مسیرورابی DyXY</td>
<td>صفحه ۶۳</td>
</tr>
</tbody>
</table>
شکل 4 - 8: شبه کد کوریتیم مسیرپایی FCA_DyXY

شکل 4 - 9: انتخاب گره مبایی در حالت misrouting

شکل 5 - 1: متوسط تأخیر کوریتیم تحت الگوی ترافیکی یکنوشت و بدون اتصال خرابی

شکل 5 - 2: متوسط تأخیر کوریتیم تحت الگوی ترافیکی یکنوشت و با دو اتصال خرابی

شکل 5 - 3: مقایسه قابلیت اعتماد الگوریتم planar_adapt و FCA_ACOXY

شکل 5 - 4: متوسط تأخیر کوریتیم تحت الگوی ترافیکی یکنوشت و بدون خرابی اتصال

شکل 5 - 5: متوسط تأخیر کوریتیم تحت الگوی ترافیکی یکنوشت و با اتصال خرابی

شکل 5 - 6: متوسط تأخیر کوریتیم تحت الگوی ترافیکی یکنوشت و با 7 اتصال خرابی

شکل 5 - 7: قابلیت اعتماد الگوریتم planar_adapt و FCA_ACOXY

شکل 5 - 8: قابلیت اعتماد الگوریتم planar_adapt و FCA_DyXY

و 10 اتصال خرابی
فهرست علائم اختصاری

<table>
<thead>
<tr>
<th>علامت اختصاری</th>
<th>مفهوم یا توضیح</th>
</tr>
</thead>
<tbody>
<tr>
<td>SoC</td>
<td>System on Chip</td>
</tr>
<tr>
<td>NoC</td>
<td>Network on Chip</td>
</tr>
<tr>
<td>ACO</td>
<td>Ant Colony Optimization</td>
</tr>
</tbody>
</table>
فصل 1:
مقدمة
با پیشرفت‌های اخیر در طراحی و ساخت مدار‌های مجتمع، امکان طراحی و توسعه مدار‌های مجتمع متشکل از المان‌های زیاد با کارایی‌های مختلف در یک تراشه تحت عنوان سیستم بر تراشة 1 فراهم شده است.

صنعت ریزپردازنده‌ها در حال حركة از پردازنده‌های تک‌هسته‌ای قادم به پردازنده‌های چند هسته-ای کوانتی و نهایتا به پردازنده‌های سیاره‌هسته‌ای شامل جندین هزار هسته پردازشی می‌باشد. بدين ترتیب با توجه به عدم مقیاس پذیری گذرگاه‌های سنتی و افزایش حجم و پچگی الگوها ارتباطی درون تراشه، استفاده از یک زیرساخت ارتباطی مناسب درون تراشه‌ای لازم می‌باشد. این زیرساخت کارآ و مقیاس‌پذیر برای ارتباطات روت تراشه، شبکه بر تراشة 2 نام دارد. (Hemani & et al, 2000; Dally & Towles, 2001; Benini & Micheli, 2002) در این ترتیب، دالین رازورگرده با سمت طراحی به صورت شبکه بر تراش های میزان به‌هورود و کاهش تأثیر در ارتباطات بین اجزای مختلف و کاهش قانون مصرفی نام برد.

یکی از جالب‌ترین اساسی برای چنین سیستم‌های پیچیده، این است که تضمین عبارت از نقش بودن همه اجزای روی تراشه غیرمکن می‌باشد. نقص‌های داخلی در آر چی‌های زمان ساخت یا نقص‌های طول عمر 3 در طول زمان عمر می‌فید سیستم رخ می‌دهند. همچنین هنگام گذرا که علم‌های تخصصی و غيرقابل پیش‌بینی دارند و می‌توانند عملکرد سیستم را به شدت تحت تأثیر قرار دهند (Lee & Chakrabarty, 2009). بنابراین با شرط و گسترش سیستم‌های حساس با قابلیت‌های گستره‌دار، نیاز به نوعی از طراحی به وجود آمد که این گونه سیستم‌ها در برابر نقص‌های گوناگون دچار خرابی نشده و به کار خود ادامه دهند. این گونه طراحی‌ها علاوه بر بالا بردند کارآیی سیستم با یک طراحی یک‌شهاب می‌تواند منطقی با هزینه‌ای منطقی را نیز داشته باشد.

1 System on chip
2 Network on chip (NoC)
3 Aging
از آنجا که کارایی شبکه‌های بر تراش‌های نیز همانند در شبکه‌های میان‌ارتباطی دیگر، به‌طور گسترده‌ای وابسته به روش‌های مسیریابی بکار رفته در آنها می‌باشد، در تراش‌های مبتنی بر شبکه بر تراش‌های طراحی گیون‌پکش مسیریابی با قابلیت تحمیل پذیری نقش روشی کارآمد برای افزایش قابلیت اطمینان در برآور نقش‌های دائمی و گذرا می‌باشد.

با توجه داشت که شبکه‌های بر تراش‌های با شبکه‌های بزرگ معمول تفاوت دارند، زیرا این شبکه‌ها بر روی تراش‌های قرار می‌گیرند و سطح مشابه روی تراش‌های پیشرفته‌ای محدود بوده و ارتباطات در این شبکه‌ها یکسان با تأخیر بسیار کمی انجام شود. بنابراین در طراحی پروتکل‌های ارتباطی برای شبکه‌های بر تراش‌های بر تراش‌های با توجه به موارد و محدودیت‌های موجود، نمی‌توان از پروتکل‌های ارتباطی مرسوم در شبکه‌های کامپیوتری به سادگی استفاده نمود. نقش مسیریابی در شبکه‌های بر تراش‌های انتخاب یک مسیر مناسب بین فرستنده و گیرنده می‌باشد به‌طوری که این مسیر دارای حداکثر تأخیر، کمترین مصرف انرژی و در این حال شامل گیون‌پکش‌ها یا پیچیدگی کمتر باشد.

الگوریتم‌های فراابتکاری الگوریتم‌های سیستمی قوی‌های هستند که در بهینه‌سازی در زمینه‌های مختلف استفاده می‌شود و در سال‌های اخیر به توجه زیادی به آنها شده است. از معروف‌ترین آنها می‌توان به الگوریتم‌های گروه پرندگان، کلونی مورچگان، زنبور عسل و زنبوری اشاره کرد. در این پروژه از الگوریتم کلونی مورچگان به م макс Peyman به بهینه‌سازی و یافتن کوتاه‌ترین مسیر وفاده اشکال در مسیریابی شبکه روز تراش‌های با تکنیکی ابتکاری استفاده شده است.

در ادامه برای بررسی بیشتر روش دومی نیز پیشنهاد شده است. این الگوریتم بر مبنای الگوریتم به‌طور کلی به قابلیت تحمیل پذیری نقش‌های دائمی لینک‌ها به آن اضافه شده و همچنین DyXY الگوریتم آگاه از اردکان می‌باشد.
2-1- ساکتار پایان‌نامه

در فصل دوم این پایان‌نامه ابتدا به مطالعه و معرفی مفاهیم مربوط به سیستم روب‌تراشی خواهیم پرداخت. سپس مفاهیم اساسی شبکه روب‌تراشی و مسائل مربوط به طراحی آن بیان خواهد شد.

هدف از این بخش شناخت دقیق شبکه روب‌تراشی و همچنین مفاهیم مربوط به الگوریتم‌های مسیریابی می‌باشد. در ادامه این فصل به بررسی توپولوژی‌های مختلف شبکه روب‌تراشی شده است و روش‌های راهگیری، کنترل جریان و کانال مجازی را به تفصیل شرح داده‌ام و نهایتا به معرفی مفاهیم مربوط به الگوریتم‌های مسیریابی پرداخته و مفاهیم را در ادامه توضیح دادیم.

در فصل سوم مفاهیم پایه نقص و خرابی در سیستم‌های دیجیتال را تعریف می‌کنیم و مشکلات احتمالی که باعث وقوع نقص در شبکه روب‌تراشی می‌شوند را مورد بررسی قرار می‌دهیم. در ادامه به مرور تعداّدی از کارهای انجام‌شده در زمینه مسیریابی تحلیل پذیر نقص در شبکه‌بترافش– های دوبعدی می‌پردازیم.

فصل چهارم الگوریتم‌های مسیریابی پیشنهادی پایان‌نامه را ارائه می‌دهد. در این فصل پس از بیان دلایل موجود برای طرح روش پیشنهادی و معرفی توانایی و کارآمدی آن، در الگوریتم تحلیل پذیری نقص برای شبکه بترافش‌های دوبعدی تحت عنوان الگوریتم مسیریابی تحلیل پذیری نقص با استفاده از الگوریتم کلونی مورچگان و الگوریتم مسیریابی تحلیل پذیری نقص و آگاهی از ازده‌خوار بر مبنای الگوریتم (FCA_DyXY) DyXY معرفی و روش مسیریابی در حضور نقص‌های دائمی و عدم حضور نقص با جنگیان شرح داده می‌شود.

در فصل پنجم پیش فرض‌های مربوط به شبیه‌سازی و نتایج حاصل از شبیه‌سازی الگوریتم‌های پیشنهادی ارائه می‌شود. به‌دین منظور روش مسیریابی پیشنهادی و یکی از روش‌های ارائه‌شده پیشین را در شرایط ترافیکی یک‌نواخت شبیه‌سازی نموده و با تحلیل و بررسی نتایج، نقاط ضعف
وقت روشنی پیشنهادی بیان می‌شود.

نهاپتا در فصل ششم خلاصه‌ای از کارهای انجام شده در این پایان‌نامه و مجموعه‌ای از موضوعات پیشنهادی برای تحقیقات آتی مطرح خواهد شد.
فصل ۲:
مروری بر مفاهیم اصلی شبکه بر تراشه
1- مقدمه

در این فصل پس از معرفی سیستم بر تراشه به بررسی معماری شبکه بر تراشه به عنوان زیرساخت ارتباطی کارآ برای ارتباطات درون تراشه می‌پردازیم. هدف اصلی از این فصل به دست آوردن آگاهی و دانش کلی در مورد مفاهیم مطرح شده در بحث شبکه بر تراشه، الکترونیک، مسیریابی، نوبلوژی‌ها مختلف، روش‌های راه‌گیری و کنترل جریان می‌باشد. همچنین تعدادی از پرکاربردترین الکترونیک‌ها مسیریابی‌ها مسیریابی‌ها را در آخر این فصل توضیح داده‌ایم.

2- سیستم برتراشه

پیشرفت‌های اخیر در روش‌های طراحی مدارهای مجتمع و فناوری تولید، طراحان را قادر به مجتمع‌سازی یک سیستم پیچیده روی یک تراشه واحد نمونه است. سیستم برتراشه در حقیقت یک سیستم بسیار فشرده با عملکرد بسیار پیچیده متشکل از تعداد زیادی واحد عملیاتی مستقل به

IP core

در عمل به صورت مجموعه‌ای از کد توصیف ساختاری است که بر حسب قابلیت‌های منظور طراحی و پیاده‌سازی می‌شود. در حالی که تعداد زیادی واحد عملیاتی مستقل به حساب می‌آید، هر واحد سیستم بر تراشه همانند تراشه‌های روی برد می‌باشد. این اجزاء از پیش طراحی شده به‌طور کلی می‌توانند شامل برداران‌های حافظه‌ها، حافظه‌ها، DSP و کنترل‌کننده‌های ورودی-خروجی باشند که در داخل یک تراشه تنها یک بار نوشته‌اند.

طراحی سیستم‌های روی تراشه بر مبنای استفاده مجدد از هسته‌های از پیش طراحی شده است، بدین معنی که برای طراحی یک سیستم جدید، تمام الکترونیک تشکیل دهنده یک آن از نو طراحی نمی‌شوند، بلکه با کنارهم قرار گرفتن الکترونیک‌های مختلفی که قبلاً ساخته و استفاده‌شدهاند، سیستم

1 Integration
2 Intellectual Property core
3 Hardware description language (HDL) code
جدید طراحی و مورد بهره‌برداری قرار گیرد (Gupta & Zorian, 1997; Bergamaschi & et al, 2001).

شکل 2-1 طراحی از یک سیستم برترامه را نشان می‌دهد که در آن هر یک از هسته‌های مختلف باشند.

ارتباطات بین هسته‌ای در سیستم بر تراشته به دو روش زیر صورت می‌گیرند:

- نقطه به نقطه ۱: در این روش برای ارتباط بین هر دو هسته کنال اختصاصی وجود دارد. از آنجا که این روش تنها از سیم‌ها بدون نیاز به ساختافزار اضافی برای انتقال داده‌ها استفاده می‌کند، بطور کلی کارایی و توان مصرفی را برای ارتباط بین تعداد کم هسته‌ها ارائه می‌کند. همچنین این روش از مشکلات مربوط به ازدحام و نیاز به داوری اجتناب می‌کند. این روش ارتباطات همزمان را ممکن می‌سازد و کیفیت خدمات را تضمین می‌کند. اما این روش دارای مشکلات زیادی از جمله عدم مقیاس‌پذیری، پیچیدگی زیاد طراحی و مسرایی اتصالات و هزینه پیاده‌سازی بالاست. این روش تحلیل‌پذیری خطای ندارد زیرا برای هر دو گره که با هم در ارتباط هستند تنها یک مسیر وجود دارد. مساله دیگر این است که اتصالات قابلیت استفاده جدید برای طراحی‌های دیگر را ندارند. این روش همچنین انعطاف پذیری ندارد و مقدار زیادی از پهنای باند هدر می‌روید زیرا سیم‌ها تنها در ۱۰٪ موارد استفاده می‌شوند. محدودیت‌های فوق باعث می‌شود که استفاده از

۱ Point to point
اتصالات نقطه به نقطه در سیستم‌های کوچک مطرح به صرفه‌باشند. با بزرگ شدن اندازه سیستم، استفاده از اتصالات نقطه به نقطه به علت محدودیت‌های پیاده‌سازی و مشکلات طراحی، روش مناسبی نیست.

گذرگاه مشترک: در این روش یک کانال مشترک در بین تمام هسته‌ها وجود دارد. این دو ساختار ارتباطی در شکل 2-1 نشان داده شده‌اند. در مقایسه با اتصالات نقطه به نقطه پیچیده‌تری طراحی کمتری دارد و چون از کانال‌های کمتری استفاده می‌کند، هزینه پیاده‌سازی آن نیز پایین‌تر می‌باشد. بدیهی است که سیستم‌های بر تراشه‌ای که از سیستم‌های انتخابی استفاده می‌نمایند، نسبت به سیستم‌های مبتنی بر گذرگاه از مفیس‌پذیری، پایین‌تر برخورد دارند. افزون بر این تمام عناصر متنقل به گذرگاه از یک مسیر واحد استفاده می‌نمایند و لذا در هر لحظه فقط دو گره با هم ارتباط دارند و سایر گره‌ها با آزاد کامل کانال بمانند. همین امر کاهش شدید کارایی سیستم را در جریان هنگامی که عناصر متفاوت ارتباط زیاد باشند، به همراه دارد. پس با این مشکلات ذکر شده، روش گذرگاه مشترک نمی‌تواند پاسخ‌گویی نیازهای ارتباطی تراشه‌های آینده باشد.

شکل 2: ساختار ارتباطات در سیستم بر تراشه ال‌ف (اتصال نقطه به نقطه، ب) گذرگاه مشترک (Jantsch & Tenhunen, 2003)

پهناه میان برخی: حداقل تعداد کانال‌های شبکه که باید قطع شوند تا شبکه به دو قسمت

1. Bus
2. Scalability
Abstract: Increasing of design complexity of integrated circuits on one hand and need to segregate activities of computation and communication sections in today's IC chips on the other hand, has directed design path towards systems based on network-on-chip. Nowadays, having high reliability in face of unwanted environmental factors is an important goal in the designing of computational systems; factors against which the vulnerabilities of circuits are ever more increasing as the sizes continually diminish in the areas of chip manufacturing technologies. In this respect, the networks-on-chip, as a scalable communication substructure in systems-on-chip, should possess this characteristic.

In this thesis, the networks-on-chip have been examined with respect to their internal structure and various types of connections and breakdowns, and also different routing algorithms and fault-tolerant routing algorithms against permanent faults and problems have been introduced and presented. Then, the designs of two types of routing algorithms tolerant of connection faults, have been presented, that in first method we use ant colony algorithm and how ants can skip the obstacles when searching for food sources. In this method packets was considered as ants and obstacles as a failures. to further explore a second method is proposed. This algorithm is based on DyXY algorithm that tolerance permanent link failures and also the algorithm is aware of the congestion. The simulation results show that the proposed algorithm has better performance in all evaluation parameters such as delay and reliability than planar adapt routing algorithm.

Keywords: Network-on-chip, Fault-tolerant routing algorithm, Reliability, ant colony algorithm
University of Mohaghegh Ardabili
Faculty of Engineering
Department of Computer Engineering

Thesis submitted in partial fulfilment of the requirements for the degree of M.Sc. in Computer engineering oriented Computer Architecture

Title:

Fault tolerant routing algorithm in networks on chip using ant colony algorithm

Supervisor:
Javad Javidan(Ph.D.)

Advisor:
Dr. Shahram Jamali(Ph.D.)

By:
Rahman Ghahremani
September – 2015