دانشکده فناوری کشاورزی و منابع طبیعی
گروه آموزشی مهندسی آب

پایان نامه برای دریافت درجه کارشناسی ارشد
در رشته مهندسی کشاورزی گرافی آبیاری و زهکشی

عنوان:
ارزیابی روش‌های مرسوم حذف آرسنیک آب آشامیدنی
(مطالعات موردی: شهرستان اردبیل)

استاد راهنما:
دکتر جوانشیر عزیزی جبری

استاد مشاور:
دکتر اسدالله اسدی

پژوهشگر:
نیلوفر صبوری

تایبستان 94
کیفیت منابع آب شرب بر اثر عوامل طبیعی و انسانی در هر منطقه دچار تغییرات فیزیکی، شیمیایی و بیولوژیکی می‌شود. آب‌های مختلف ناشی از فعالیت‌های صنعتی، کشاورزی، شهری و روستایی وضعیت کیفی منابع آب را به مخاطره انداخته است. یکی از آلودگی‌های مهم که برای سلامت تهدید به شمار می‌آید وجود فلز آرسنیک در منابع آب شرب است. براساس تقسیم بندی IARC تركیبات غیر آرسنیک در گروه (سرطان‌زا برای انسان) قرار دادن، به همین دلیل حذف آرسنیک از منابع آب در اولویت برنامه‌های بهداشتی قرار می‌گیرد. این پژوهش به منظور حذف آرسنیک از آب آشامیدنی با استفاده از جریان فرآیند عصب در دانشگاه محقق اردبیلی و با توجه به وجود احتمال آرسنیک در چاه‌های آب شرب شهر اردبیل انجام شد. برای انجام آزمایش، پارامترهای دما، غلظت آرسنیک، pH غلظت آنروده آهن و زمان تماس در نظر گرفته شد. نتایج آزمایش‌های غلظت آرسنیک (0/018، 0/025، 0/05، 0/1، 0/2، 0/5، 1، 2، 4، 6، 7، 9، 8، 10، 11، 15، 20، 25، 30 درجه سانتی‌گراد) و در روش‌های پنجم (همگانه) و سیزده (همگانه) ترکیب آزمایش‌گرند. نتایج آزمایش نشان دهنده صفر درصد حذف آرسنیک در هر دو روش در غلظت بهینه سوییه (1/5 میلی‌گرم بر لیتر) و دمای 30 درجه سانتی‌گراد pH اسیدی 4 توسط نانوذره و در حالت صاف و 9 بار در آزمایش‌های 1/5 میلی‌گرم بر لیتر و دمای 30 درجه سانتی‌گراد pH اسیدی 4 توسط نانوذره و در حالت صاف و 9 بار در آزمایش‌های 1/5 میلی‌گرم بر لیتر و دمای 30 درجه سانتی‌گراد pH اسیدی 4 توسط نانوذره و در حالت صاف و 9 بار در آزمایش‌های 1/5 میلی‌گرم بر لیتر و دمای 30 درجه سانتی‌گراد pH اسیدی 4 توسط نانوذره و در حالت صاف و 9 بار در آزمایش‌های 1/5 میلی‌گرم بر لیتر و دمای 30 درجه سانتی‌گراد pH اسیدی 4 توسط نانوذره و در حالت صاف و 9 بار در آزمایش‌های 1/5 میلی‌گرم بر لیتر و دمای 30 درجه سانتی‌گراد pH اسیدی 4 توسط نانوذره و در حالت صاف و 9 بار در آزمایش‌های 1/5 میلی‌گرم بر لیتر و دمای 30 درجه سانتی‌گراد pH اسیدی 4 توسط نانوذره و در حالت صاف و 9 بار در آزمایش‌های 1/5 میلی‌گرم بر لیتر و دمای 30 درجه سانتی‌گراد pH اسیدی 4 توسط نانوذره و در حالت صاف و 9 بار در آزمایش‌های 1/5 میلی‌گرم بر لیتر و دمای 30 درجه سانتی‌گراد pH اسیدی 4 توسط نانوذره و در حالت صاف و 9 بار در آزمایش‌های 1/5 میلی‌گرم بر لیتر و دمای 30 درجه سانتی‌گراد pH اسیدی 4 توسط نانوذره و در حالت صاف و 9 بار در آزمایش‌های 1/5 میلی‌گرم بر لیتر و دمای 30 درجه سانتی‌گراد pH اسیدی 4 توسط نانوذره و در حالت صاف و 9 بار در آزمایش‌های 1/5 میلی‌گرم بر لیتر و دمای 30 درجه سانتی‌گراد pH اسیدی 4 توسط نانوذره و در حالت صاف و 9 بار در آزمایش‌های 1/5 میلی‌گرم بر لیتر و دمای 30 درجه سانتی‌گراد pH اسیدی 4 توسط نانوذره و در حالت صاف و 9 بار در آزمایش‌های 1/5 میلی‌گرم بر لیتر و دمای 30 درجه سانتی‌گراد pH اسیدی 4 توسط نانوذره و در حالت صاف و 9 بار در آزمایش‌های 1/5 میلی‌گرم بر لیتر و دمای 30 درجه سانتی‌گراد pH اسیدی 4 توسط نانوذره و در حالت صاف و 9 بار در آزمایش‌های 1/5 میلی‌گرم بر لیتر و دمای 30 درجه سانتی‌گراد pH اسیدی 4 توسط نانوذراه آهن 98٪ می‌باشد. نانوذره آهن را می‌توان روشی ارزان و کارامد بیان کرد و از آن به صورت دوجا در محيط اسفاده کرد.

کلید واژه‌های: آرسنیک، اسمز مکوس، نانوذرات آهن، صرف، اردبیل.
فهرست مطالب

<table>
<thead>
<tr>
<th>صفحه</th>
<th>عنوان</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>فصل اول: مقدمه و کلیات</td>
</tr>
<tr>
<td>1-1</td>
<td>مقدمه</td>
</tr>
<tr>
<td>1-1-1</td>
<td>بررسی آلانده‌های آب‌داری</td>
</tr>
<tr>
<td>1-1-2</td>
<td>آرسینک</td>
</tr>
<tr>
<td>3-1-1</td>
<td>پیشینه</td>
</tr>
<tr>
<td>3-1-2</td>
<td>پیشینه انگلیسی</td>
</tr>
<tr>
<td></td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td>2-3-1</td>
<td>سوال‌های پژوهش</td>
</tr>
<tr>
<td>3-1</td>
<td>قضاوت‌ها و پژوهش</td>
</tr>
<tr>
<td>4-1</td>
<td>اهداف پژوهش</td>
</tr>
<tr>
<td>5-1</td>
<td>ضرورت و اهمیت پژوهش</td>
</tr>
<tr>
<td></td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td>1-2</td>
<td>فصل دوم: مبانی نظری پژوهش</td>
</tr>
<tr>
<td></td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td>2-2</td>
<td>آنالوگ آب</td>
</tr>
<tr>
<td></td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td>1-2-2</td>
<td>تعریف</td>
</tr>
<tr>
<td>2-2-2</td>
<td>انواع آنالوگی</td>
</tr>
<tr>
<td></td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td>3-2</td>
<td>فاکتورهای حذف آنالوگی</td>
</tr>
<tr>
<td></td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td>3-2-1</td>
<td>شناساندن - رسوش شیمیایی</td>
</tr>
<tr>
<td></td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td>3-2-2</td>
<td>تبیین آب</td>
</tr>
<tr>
<td></td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td>3-2-3</td>
<td>تبیین آهن</td>
</tr>
<tr>
<td></td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td>3-2-2</td>
<td>جذب سطحی</td>
</tr>
<tr>
<td></td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td>1-2-3</td>
<td>نابل پویی</td>
</tr>
<tr>
<td></td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td>2-2-3</td>
<td>آلمنیای فعال</td>
</tr>
<tr>
<td></td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td>3-2-3</td>
<td>مرحله‌های هیدروکسمی فریک (GFH)</td>
</tr>
<tr>
<td></td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td>3-3-2</td>
<td>چندکاره‌ی غشایی</td>
</tr>
</tbody>
</table>
فصل سوم: مواد و روش پژوهش

فصل چهارم: نتایج و یافته‌های پژوهش
<table>
<thead>
<tr>
<th>جدول</th>
<th>عنوان</th>
</tr>
</thead>
<tbody>
<tr>
<td>جدول 3-1</td>
<td>مشخصات ناوندروت آهن</td>
</tr>
<tr>
<td>جدول 4-1</td>
<td>میزان حذف آرسنیک غشاء TW40 در غلظت‌های مختلف (mg/l)</td>
</tr>
<tr>
<td>جدول 4-2</td>
<td>میزان حذف آرسنیک غشاء TW40 در pHهای مختلف</td>
</tr>
<tr>
<td>جدول 4-3</td>
<td>جدول 4-1 تجزیه و تحلیل آماری غلظت‌های مختلف آرسنیک</td>
</tr>
<tr>
<td>جدول 4-4</td>
<td>جدول 4-2 تجزیه واریانس مربوط به آرسنیک</td>
</tr>
<tr>
<td>جدول 4-5</td>
<td>جدول 4-3 آزمون دانکن مربوط به غلظت آرسنیک</td>
</tr>
<tr>
<td>جدول 4-6</td>
<td>جدول 4-4 تجزیه واریانس مربوط به pH</td>
</tr>
<tr>
<td>جدول 4-7</td>
<td>جدول 4-5 تجزیه واریانس مربوط به pH</td>
</tr>
<tr>
<td>جدول 4-8</td>
<td>جدول 4-6 تجزیه واریانس مربوط به pH</td>
</tr>
<tr>
<td>جدول 4-9</td>
<td>جدول 4-7 تجزیه و تحلیل آماری دما (درجهٔ سانتی‌گراد)</td>
</tr>
<tr>
<td>جدول 4-10</td>
<td>جدول 4-8 تجزیه و تحلیل آماری دما (درجهٔ سانتی‌گراد)</td>
</tr>
<tr>
<td>جدول 4-11</td>
<td>جدول 4-9 آزمون دانکن مربوط به دما (درجهٔ سانتی‌گراد)</td>
</tr>
<tr>
<td>جدول 4-12</td>
<td>جدول 4-10 تجزیه و تحلیل آماری غلظت آرسنیک</td>
</tr>
<tr>
<td>جدول 4-13</td>
<td>جدول 4-11 تجزیه و تحلیل آماری غلظت ناوندروت آهن (g/l)</td>
</tr>
</tbody>
</table>

جدول 5

<table>
<thead>
<tr>
<th>جدول</th>
<th>عنوان</th>
</tr>
</thead>
<tbody>
<tr>
<td>جدول 5-1</td>
<td>تجزیه و تحلیل آماری غلظت آرسنیک</td>
</tr>
<tr>
<td>جدول 5-2</td>
<td>تجزیه واریانس مربوط به غلظت آرسنیک</td>
</tr>
<tr>
<td>جدول 5-3</td>
<td>تجزیه واریانس مربوط به غلظت آرسنیک (mg/l)</td>
</tr>
<tr>
<td>جدول 5-4</td>
<td>تجزیه واریانس مربوط به pH</td>
</tr>
<tr>
<td>جدول 5-5</td>
<td>تجزیه واریانس مربوط به pH</td>
</tr>
<tr>
<td>جدول 5-6</td>
<td>تجزیه واریانس مربوط به pH</td>
</tr>
<tr>
<td>جدول 5-7</td>
<td>تجزیه واریانس مربوط به دما (درجهٔ سانتی‌گراد)</td>
</tr>
<tr>
<td>جدول 5-8</td>
<td>تجزیه واریانس مربوط به دما (درجهٔ سانتی‌گراد)</td>
</tr>
<tr>
<td>جدول 5-9</td>
<td>آزمون دانکن مربوط به دما (درجهٔ سانتی‌گراد)</td>
</tr>
<tr>
<td>جدول 5-10</td>
<td>آزمون دانکن مربوط به غلظت آرسنیک</td>
</tr>
<tr>
<td>جدول 5-11</td>
<td>تجزیه و تحلیل آماری دما (درجهٔ سانتی‌گراد)</td>
</tr>
</tbody>
</table>

جدول 6

<table>
<thead>
<tr>
<th>جدول</th>
<th>عنوان</th>
</tr>
</thead>
<tbody>
<tr>
<td>جدول 6-1</td>
<td>تجزیه و تحلیل آماری غلظت آرسنیک</td>
</tr>
<tr>
<td>جدول 6-2</td>
<td>تجزیه واریانس مربوط به غلظت آرسنیک</td>
</tr>
<tr>
<td>جدول 6-3</td>
<td>تجزیه واریانس مربوط به دما (درجهٔ سانتی‌گراد)</td>
</tr>
<tr>
<td>جدول 6-4</td>
<td>تجزیه واریانس مربوط به دما (درجهٔ سانتی‌گراد)</td>
</tr>
<tr>
<td>جدول 6-5</td>
<td>آزمون دانکن مربوط به دما (درجهٔ سانتی‌گراد)</td>
</tr>
<tr>
<td>جدول 6-6</td>
<td>آزمون دانکن مربوط به غلظت آرسنیک</td>
</tr>
<tr>
<td>جدول 6-7</td>
<td>تجزیه و تحلیل آماری غلظت آرسنیک</td>
</tr>
<tr>
<td>جدول 6-8</td>
<td>تجزیه و تحلیل آماری غلظت آرسنیک</td>
</tr>
<tr>
<td>جدول 6-9</td>
<td>تجزیه و تحلیل آماری غلظت آرسنیک</td>
</tr>
<tr>
<td>جدول 6-10</td>
<td>تجزیه و تحلیل آماری غلظت آرسنیک</td>
</tr>
</tbody>
</table>

جدول 7

<table>
<thead>
<tr>
<th>جدول</th>
<th>عنوان</th>
</tr>
</thead>
<tbody>
<tr>
<td>جدول 7-1</td>
<td>تجزیه و تحلیل آماری غلظت آرسنیک</td>
</tr>
<tr>
<td>جدول 7-2</td>
<td>تجزیه واریانس مربوط به غلظت آرسنیک</td>
</tr>
<tr>
<td>جدول 7-3</td>
<td>تجزیه واریانس مربوط به دما (درجهٔ سانتی‌گراد)</td>
</tr>
<tr>
<td>جدول 7-4</td>
<td>تجزیه واریانس مربوط به دما (درجهٔ سانتی‌گراد)</td>
</tr>
<tr>
<td>جدول 7-5</td>
<td>آزمون دانکن مربوط به دما (درجهٔ سانتی‌گراد)</td>
</tr>
<tr>
<td>جدول 7-6</td>
<td>آزمون دانکن مربوط به غلظت آرسنیک</td>
</tr>
<tr>
<td>جدول 7-7</td>
<td>تجزیه و تحلیل آماری غلظت آرسنیک</td>
</tr>
<tr>
<td>جدول 7-8</td>
<td>تجزیه و تحلیل آماری غلظت آرسنیک</td>
</tr>
<tr>
<td>جدول 7-9</td>
<td>تجزیه و تحلیل آماری غلظت آرسنیک</td>
</tr>
<tr>
<td>جدول 7-10</td>
<td>تجزیه و تحلیل آماری غلظت آرسنیک</td>
</tr>
</tbody>
</table>
جدول 5- آزمون دانکن مربوط به غلظت نانوذرات آهن (g/l) (درجه سانتیگراد)

جدول 5- جدول تجزیه و تحلیل آماری pH

جدول 5- جدول تجزیه و تحلیل آماری زمان‌های ناسالم (دقیقه)

جدول 5- جدول تجزیه و تحلیل آماری زمان‌های دمای مختلف (درجه سانتیگراد)

جدول 5- جدول تجزیه و تحلیل آماری دمای‌های مختلف (درجه سانتیگراد)

جدول 5- جدول تجزیه و تحلیل آماری دمای‌های مختلف (درجه سانتیگراد)

جدول 5- جدول تجزیه و تحلیل آماری دمای‌های مختلف (درجه سانتیگراد)

جدول 5- جدول تجزیه و تحلیل آماری دمای‌های مختلف (درجه سانتیگراد)

جدول 5- جدول تجزیه و تحلیل آماری دمای‌های مختلف (درجه سانتیگراد)
<table>
<thead>
<tr>
<th>شکل</th>
<th>عنوان</th>
</tr>
</thead>
<tbody>
<tr>
<td>شکل 1-2</td>
<td>طرح اجمالی سیستم سد نفوذ پذیر حاوی گرانولهای ZVI مورد استفاده برای تصفیه آب‌های زیرزمینی (لی و همکاران، 2006)</td>
</tr>
<tr>
<td>شکل 2-2</td>
<td>حال تجمیع NZVI (سالان، 2007)</td>
</tr>
<tr>
<td>شکل 2-3</td>
<td>حذف آلایندهای مختلف با نانوژرات آهن صفر ظرفیتی. هسته‌ی مرکزی از آهن فلزی و بوسته‌ی آن از آهن اکسیدی تشکیل شده است. همچنین تخلخل بوسته ممکن است. (زاهگان، 2009).</td>
</tr>
<tr>
<td>شکل 3-1</td>
<td>نمودار شهرستان اردبیل</td>
</tr>
<tr>
<td>شکل 3-2</td>
<td>دستگاه سانتیفیوز</td>
</tr>
<tr>
<td>شکل 3-3</td>
<td>دستگاه اسپیدفورتومتری</td>
</tr>
<tr>
<td>شکل 3-4</td>
<td>pH</td>
</tr>
<tr>
<td>شکل 3-5</td>
<td>پایلوت تصفیه آب</td>
</tr>
<tr>
<td>شکل 3-6</td>
<td>دستگاه فرآیند آلتراسونیک</td>
</tr>
<tr>
<td>شکل 3-7</td>
<td>دیاگرام جریان در پایلوت</td>
</tr>
<tr>
<td>بخش 3-8</td>
<td>شماجی از غشاء RO مورد استفاده در این تحقیق و نحوه عبور جریان از آن</td>
</tr>
<tr>
<td>شکل 3-9-1</td>
<td>تصویر میکروسکوپ الکترونی عبوری نانوژرات آهن</td>
</tr>
<tr>
<td>شکل 4-1</td>
<td>حذف آرسنیک براساس تغییرات غلظت آرسنیک (mg/l)</td>
</tr>
<tr>
<td>شکل 4-2</td>
<td>حذف آرسنیک براساس تغییرات pH</td>
</tr>
<tr>
<td>شکل 4-3</td>
<td>حذف آرسنیک براساس تغییرات دما (درجیل سانتی‌گراد)</td>
</tr>
<tr>
<td>شکل 4-4</td>
<td>حذف آرسنیک براساس تغییرات غلظت (mg/l) زمان تماس (MINT)</td>
</tr>
<tr>
<td>شکل 4-5</td>
<td>حذف آرسنیک براساس تغییرات غلظت نانوژرات آهن صفر ظرفیتی (g/l) زمان تماس (MINT)</td>
</tr>
</tbody>
</table>
شکل 5-8- درصد حذف آرسنیک براساس تغییرات دما (°C)
<table>
<thead>
<tr>
<th>علامت اختصاری</th>
<th>مفهوم یا توضیح</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>هیدروژن</td>
</tr>
<tr>
<td>O</td>
<td>اکسیژن</td>
</tr>
<tr>
<td>P</td>
<td>فسفر</td>
</tr>
<tr>
<td>K</td>
<td>پتاسیم</td>
</tr>
<tr>
<td>S</td>
<td>گوگرد</td>
</tr>
<tr>
<td>Mg</td>
<td>منزهیم</td>
</tr>
<tr>
<td>Ka</td>
<td>کلسیم</td>
</tr>
<tr>
<td>Mo, Co, Cl, Zn, Fe</td>
<td>میکرو و ماکرونوتریون‌ها</td>
</tr>
<tr>
<td>Pb</td>
<td>سرب</td>
</tr>
<tr>
<td>Hg</td>
<td>گیوه</td>
</tr>
<tr>
<td>Cd</td>
<td>کادمیوم</td>
</tr>
<tr>
<td>HCN</td>
<td>سیانور</td>
</tr>
<tr>
<td>As</td>
<td>آرسنیک</td>
</tr>
<tr>
<td>Se</td>
<td>سلنیم</td>
</tr>
<tr>
<td>Sb</td>
<td>سنتونمان</td>
</tr>
<tr>
<td>Zn</td>
<td>روی</td>
</tr>
<tr>
<td>Cr</td>
<td>کروم</td>
</tr>
<tr>
<td>Fe</td>
<td>آهن</td>
</tr>
<tr>
<td>As (III)</td>
<td>آرسنیک سه ظرفیتی</td>
</tr>
<tr>
<td>As (V)</td>
<td>آرسنیک پنج ظرفیتی</td>
</tr>
<tr>
<td>F</td>
<td>فلورید</td>
</tr>
<tr>
<td>Al</td>
<td>آلومینیوم</td>
</tr>
<tr>
<td>NO₃</td>
<td>نیترات</td>
</tr>
<tr>
<td>Humic Acid</td>
<td>اسید هیومیک</td>
</tr>
<tr>
<td>H_2AsO_4</td>
<td>ارسنیت</td>
</tr>
<tr>
<td>H_3AsO_3</td>
<td>ارسنیت</td>
</tr>
<tr>
<td>H_3AsO_4</td>
<td>ارسنیت</td>
</tr>
<tr>
<td>H_2AsO_3^-</td>
<td>ارسنیت</td>
</tr>
<tr>
<td>H_2AsO_4^-</td>
<td>ارسنیت</td>
</tr>
<tr>
<td>H_3AsO_3^-</td>
<td>ارسنیت</td>
</tr>
<tr>
<td>H_3AsO_4^-</td>
<td>ارسنیت</td>
</tr>
<tr>
<td>B</td>
<td>بور</td>
</tr>
</tbody>
</table>
فصل اول
مقدمه و كليات
1-1- مقدمه

آب، ماده‌ی حیاتی است و یکی از تغییر‌های شیمیایی در محیط آبی صورت می‌گیرد.

(یزدان بَرست، 1392). آب، بخش‌هایی از سه چهارم سطح کره زمین را پوشانده است. 2/97 درصد از آب‌های موجود در این سیاره در اقیانوس‌ها و دریاها انباشت شده‌اند، و تنها حدود 2/8 درصد از آب‌های موجود قابل شرب می‌باشد. مقدار قابل توجهی از کل آب‌های سطح کره‌ی زمین در مناطق قطبی، یک‌جا‌هدای طبیعی، رطوبت‌ها و خاکی پاشیده که عملیات غیر قابل دسترس است و تنها 2/62 درصد از آن در رودخانه‌ها و یا به صورت دریاچه‌های آب‌پر شریان و منابع زیست‌میانی قرار دارده و انسان‌ها آب آشامیدنی خود را از این منابع تأمین می‌نمایند. امروزه این منابع محدود آب‌پر شریان قابل دسترس در معرض انواع آلودگی‌های میکروبی و شیمیایی قرار گرفته‌اند، و آینده‌های فراوانی از طریق فاضلاب‌های صنعتی و کودهای شیمیایی منابع حیاتی انسان‌ها را به طور جدی تهدید می‌نمایند (دینی و همکاران، 1385).

1-1- بررسی آلاینده‌های آب

کیفیت آب عامل تعیین کننده‌ای برای آسایش و رفاه انسان‌ها است. با وجود تصفیه‌های آب آشامیدنی در شهرها هنوز هم بعضی از منابع آب شیری در برخی نقاط نا適یق مقادیر خطرناکی از عوامل بالقوه بیماری‌زا هستند. ترکیبات شیمیایی و سمی در اندازه‌های کم به هیچ وجه در آب آشامیدنی قابل روت نیستند و بدون انجام آزمایشات ویژه به راحتی نمی‌توان در خصوص کیفیت آب اظهار نظر کرد. در جوامع صنعتی سرچشمه‌های گوناگونی برای وارد شدن آلودگی‌های شیمیایی به درون آب وجود دارد. فاضلاب حاصل از صنایع شیمیایی و آب‌پر شریان و عبور از میان زمین‌های کشاورزی سیباشی شده؛ منابع آلودگی شیمیایی آب‌هستند. برخی عناصر موجود در آب به عنوان مواد مغذی برای جانوران و گیاهان شاخه‌ای می‌شوند و مقدار کم آنها مورد نیاز و مقدار زیاد آنها سلیقه‌ای است. مانند هیدروفیور، اکسید، فسفر، پتاسیم، گوگرد، منیزیم، کلسیم (یزدان بَرست، 1392). برخی عناصر از لحاظ مسئله‌های مهیت زیست‌بیطری با اهمیت هستند، مانند سرب، جیوه، کادمیوم، بعضی از شیء فلزات عنصری که حد فاصل فلزها و
گیرم و یا در ابتدا باید آب به حساب می‌آیند؛ آرسنیک سلنیم، آنتیمیون در این زمینه حائز اهمیت هستند (دینی و همکاران، 1385).

ورود فلزات سنگین (کادمیوم، سرب، جیوه و ...) به منابع تأمین کننده‌ی آب‌ها از راه‌های مختلف، یکی از مشکلات زیست محيطی نگران کننده‌ی بشر می‌باشد. با داده‌های فلزات سنگین در محیط زیست و رود آنها به زنگیری غذایی و خاصیت تجمع آنها باعث بروز اثرات حاد و مزمن (اختلال در کار آنزیمی، مسمومیت‌های خطرناک و...) در انسان و سایر موجودات می‌گردد (عالی‌قدیر و همکاران، 1386).

1-2-1-آرسنیک

در جوامع صنعتی کنونی، راهی برای دوی از فلزات سنگین وجود ندارد. مثلا در آمریکا هر ساله هزاران تن پساب کارخانجات حاوی فلزات سنگین باعث انتشار آرسنیک، روی، کادمیوم، کروم و غیره در خاک می‌شود و سپس وارد زنگیری غذایی انسان می‌گردد. پایداری بیون‌های فلزی در محیط، مشکلات عدیده‌ای را ایجاد می‌کند. فلزات نمی‌توانند مانند آلودگی‌های آلی به روش‌های شیمیایی یا زیستی در طبیعت تجزیه شوند. ترکیب‌های فلزی می‌توانند تغییر یابند.اما زنگیری فلزی همچنان باقی می‌ماند. فلزات سنگین همچنین جایگزین دیگر املاح و مواد معدنی مورد نیاز در بدن می‌شوند. یکی از دلایل پایداری بیون‌های فلزی، مانند کری، آنها در زنگیری غذایی می‌باشد که موجب به مخاطره‌ای فیباتین‌ها و جانوران زیادی می‌شود. به دلیل عدم طولانی برخی فلزات، سلول زندگی تعامل به ذخیره‌سازی آنها در خود دارد (پیغمبریان، 1381). به طور عادی فلزات سنگین سه‌جامه‌ی سیستمیک بوده و با اثر اختصاصی در روح اصاص، کلیه، جنین و سرطان‌زاپی، باعث مراک و مصرف می‌شوند. کبد، سرواخ بینی، ریه، پوس، مثانه و کلیه در مردان و زنان و پروستات و کبد در مردان را مشخص نموده است (کوهی و دنیابور، 1392).

براساس تحقیقاتندی سازمان بین‌المللی تحقیقات سرطان1 ترکیبات غیر آلی آرسنیک در گروه انسان (سازمان بهداشت جهانی، 2009).

1 IARC
2 World Health Organization (WHO)
شکل 1-1: کشورهایی از دنیا که وجود آرسنیک در آب‌های سطحی و زیرزمینی آنها گزارش شده است

(موکچی ۳ و همکاران، ۲۰۰۶).

به‌طور کلی آرسنیک به شکل فلزی است که نماد شیمیایی آن بصورت As است. عدد اتمی آن ۳۳ و وزن اتمی آن ۷۴/۹۲ دانسیته آن ۹۷/۳ در دمای ۸۱۷ درجه سانتی‌گراد و نقطه ذوب آن ۶۱۳ درجه سانتی‌گراد است.

خواص شیمیایی آن شبیه فسفر می‌باشد. بطوری که در بعضاً از واکنش‌ها جانشین فسفر می‌شود. این ماده یکی از عنصر کم‌پای در بیوشیمی جامد زمین است که از لحاظ فراوانی در پیستمین فراوانی در بیوشیمی زمین، جهاردهمین فراوانی در آب دریا و دوازدهمین فراوانی در بدن انسان است (حرفوش، ۱۳۸۹). این عنصر در محیط با ظرفیت‌های مختلف و نیز به صورت معدنی و آبی یافت می‌شود که می‌توان به آرسنات، آرسنیت و حالت صفر ظرفیتی آن اشاره کرد (توماس و همکاران، ۲۰۰۷).

آرسنیک معمولاً بصورت آرسنات یا آرسنیت در منابع آب دیده می‌شود، آرسنات بطور عمده به شکل آنیون‌های یک و دو ظرفیتی در آب‌های دارای آکسیژن فراوان و آرسنیت در آب‌های دچار کمبود اکسیژن یافت می‌شوند (مدلی، ۱۳۹۲.۹۱۳). گونه‌های آرسنیک سه ظرفیتی سمبیوئی، محلول‌تر و بر تحکیک تر از گونه‌های آرسنیک پنج ظرفیتی می‌باشند. علاوه بر حضور طبیعی آرسنیک در محیط زیست، فعالیت‌های بشر نیز عامل افزایش میزان این عنصر در طبیعت شده است (حرفوش، ۱۳۸۹). قرار گرفتن انسان در معرض آرسنیک چند طریق صورت می‌گیرد که شامل هوا، مواد غذایی، آب و خاک می‌باشد. اثرات مرتبط با این موارد با توجه به شرایط بومی متفاوت است، اما از منابع بالقوه آرسنیک، آب آشامیدنی یکی

۳ Mukherjee
۴ Arsenate
۵ Arsenite
۶ Thomas
از مهم‌ترین تهیه‌کننده البرای سلامت انسان‌ها می‌باشد (شریفی‌نیا عطار و همکاران، 1392). آرسنیک از طریق حل شدن کاتی‌ها و مواد معدنی، تخلیه یا دستگیری وارد منابع آب می‌گردد. غلظت آرسنیک در این منابع بسیار متغیر بوده و با توجه به حجم‌های مختلف، اندام‌های آن نیز تطبیق می‌کند (وامبای، 2001). به استثنای منابع محلی آلوده شده‌ای که در آب‌های زیرزمینی گسترش یافته می‌شود، که به دلیل فراپید تغییر طبیعی آب و سبک و نسبت بالای جامد به محلول یافته شده در آبخوان‌هایی، بناباران آب‌های زیرزمینی بزرگ‌ترین تهیه‌کننده برای سلامتی به شمار می‌آیند (وانگ و همکاران، 2009). تحقیقات نشان می‌دهد که تعدادی از سفره‌های بزرگ آب‌های زیرزمینی در دنیا دارای مشکل حضور آرسنیک در غلظت بالای 50 میکروگرم در لیتر هستند. غلظت آن در آب‌های زیرزمینی 2000-200 μg/L تا 5000 μg/L بوده است (عابدی و همکاران، 1391).

تکنولوژی‌های حذف آرسنیک شامل گزینه‌های جذب سطحی، تعویض یونی، ترسیب شیمیایی و فیلتراسیون غشاوی می‌باشد. در تکنولوژی جذب با استفاده از مواد جاذب که نیروی کنشی قوی نسبت به آرسنیک محلول دارند، جذب و حذف آرسنیک از آب صورت می‌گیرد. تبادل یونی نیز آزادی است که آن‌ها از آرسنیک را با کلر و یا دیگر یون‌های تباذل می‌کند. در فراپید رسوپدنه‌های شیمیایی مواد منعقد‌کننده‌ای چون آلوم و آلیاژ به عنوان هیدروکسید به آب اضافه می‌شوند، تا این‌ها با آرسنیک واکنش‌های هم‌رسوبی و هم‌جذبی انجام دهند و رسوپ‌ها توسط فیلتراسیون یا تنشین‌های حذف می‌شوند. در فراپید فیلتراسیون غشاوی حذف آرسنیک توسط فیلتراسیون فیزیکی با استفاده از غشاء‌های دارای نفوذ‌پذیری انعطاف‌پذیر انجام می‌شود (پن‌ناهی و همکاران، 1391).

بطرور کلی فناوری حذف آرسنیک از آب در سه دسته اصلی قرار می‌گیرند که عبارتند از کارتنی، و همکاران، 1995): 7

1. لخته شدن- رسوب شیمیایی، 2- جذب سطحی، 3- جداسازی غشاوی

Iomaba
8 Wang
9 Adsorption
10 Ion exchange
11 Chemical deposition
12 Membrane filtration
13 Co-sedimentary
14 Co-adsorption
15 Kartinen
16 Membrane sepration
حضور آرسنیک در آب آشامیدنی، به همراه اثرات و عوارض نامطلوب بهداشتی حاصل از آن بر سلامت انسان‌ها مسئله‌ای است که به‌همراه تغییرات در دانشمندان و محققان را در کشورهای مختلف دنیا تا قرن گذشته و حاضر به‌خود جلب شده است. برای رسیدن غلظت آرسنیک به میزان مجاز 17 در آب به عنوان یک ضرورت، تحقیقات مختلفی در سراسر دنیا صورت گرفته است. این جمله می‌توان به موارد زیر اشاره نمود.

کلیفورنیا و همکاران (1986) نشان دادند راندمان حذف اس‌م‌زم‌مزیک 19 برای آرسنیک پنج و سه ظرفیتی در آب با غلظت 20 ppb در 1900 تا 9000 درصد است. تحقیقی که توسط برنده وب اومر 18 و همکاران (1998) انجام گرفت، نشان داد، اس‌م‌زم‌مزیک و نانوفلتراسیون 20 آرسنیک پنج ظرفیتی را تا بیش از 95% حذف می‌کند در حالیکه آرسنیک سه ظرفیتی را تا حدود 90% حذف می‌کند. به‌دلیل راندمان بالای حذف آرسنیک در اس‌م‌زم‌مزیک و نانوفلتراسیون، غیرمعنی‌داری ارتباط بالا در این دو مورد کاربرد آنها امروزه کشورهای مختلف است. اما نشان دادند راندمان حذف آرسنیک سه ظرفیتی که دنده خارج می‌کند از آرسنیک پنج ظرفیتی است. در اس‌م‌زم‌مزیک و نانوفلتراسیون به ترتیب 74 و 40 درصد است. این محققان دریافتند که اس‌م‌زم‌مزیک نسبت به فرآیندهای غشاپی دیگر کارایی بالاتری در حذف آرسنیک دارد. به‌دلیل که حذف آرسنیک سه ظرفیتی توسط اس‌م‌زم‌مزیک بدون افزودن مواد اکسیدکننده نسبت به فرآیندهای غشاپی دیگر بالاتر است و در آب‌های حاوی آرسنیک سه ظرفیتی تناهی اس‌م‌زم‌مزیک توانایی تحلیل مواد بالای آن را دارد.

یکی از محدودیت‌های عده‌ای اس‌م‌زم‌مزیک حذف مواد آلی محلول 19 است که ممکن است جهت تولید کیفیت مناسب برای تصفیه‌های به‌همراه آب شهری لازم باشد.

17 MCL
18 Clifford
19 Reverse osmosis
20 Particle per billion
21 Brandhubber
22 Nanofiltration
23 TDS
کاگ و همکاران (2000) از دو نوع غشا اسزممعکوس پلی آمید و پلیونیل الکل برای حذف آرسنیک استفاده کردند. نتایج نشان داد پلیونیل الکل در pH=3 حدهای 80 درصد رانندگان دارد و در pH=5-5 درصد افزایش می‌یابد و در غشا پلی آمید رانندگان در 5-3 pH تا حد 10، رانندگان حذف تا بالای 90 درصد افزایش می‌یابد. این نتایج نشان می‌دهد که نوع غشا و pH محلول در رانندگان حذف آرسنیک تأثیر مستقیم دارد.

مورتی و آزاس حفاظت محیط زیست آمریکا (2002) در دانشگاه ایالت مونتانا جهت ارزیابی فرآیند ارسیم معکوس برای حذف آرسنیک از آب تحقیقاتی را انجام دادند، که تمرکز اصلی در این تحقیق بر حذف آرسنیک III بود. پس از آزمایش 21 پایلوت در این تحقیق، مشخص شد که در تمامی آنها حذف آرسنیک III بالاتر از 90 درصد بوده است.

لنی و همکاران (2002) تحقیقی برای حذف آرسنیک از آب‌های زیرزمینی با استفاده از دو روش اسزم معکوس و تقطیر در نقطه‌ای مصرف انجام دادند. جهت انجام تحقیق از سه نوع غشا اسزم معکوس و دو نوع تجهیزات تقطیر استفاده شد. نتایج حاصل نشان داد هر دو روش در حذف آرسنیک از نمونه‌های واقعی آب‌های زیرزمینی و نیز سنتیک مؤثر بوده، میزان آرسنیک در نمونه‌های خرچنی در حد استاندارد و تا 99 درصد حذف نیز گزارش شده است.

نینگ و همکاران (2002) در سن دیگو با استفاده از غشاهای اسزممعکوس در چند پایلوت مختلف به حذف 99 درصدی آرسنیک V و حذف 84 درصدی آرسنیک III رسید. به طور کلی حذف آرسنیک پایلوت‌های مختلف از 96-40 درصد بوده است.

نديای و همکاران (2005) به بررسی حذف فلورایدی از بlässیهای الومینیوم با استفاده از غشاء RO پرداختند. در این بررسی مشخص شده است که اسزم معکوس قابلیت حذف فلوراید در غلغظه‌های بالا را دارا است.
Family name: Saboori Name: Niloufar

Title of Thesis: Evaluation of Common Methods for Removal of Arsenic from Drinking Water (Case study: Ardabil city)

Supervisor(s): Dr. Javanshir Azizi Mobser
Advisor(s): Dr. Assadolah Asady

Graduate Degree: M.Sc.
Major: Agriculture Engineering Specialty: Irrigation and Drainage
University: Mohaghegh Ardabili Faculty: Agricultural Technology and Natural
Graduation date: 22/09/2015 Number of pages: 101

Abstract:
The quality of drinking water is a result of natural and human factors in each region, with a negative change of physical, chemical and biological. Get pollution from industrial activities, agriculture, urban and rural water supplies has jeopardized quality status. One of the human pollution that treats to health is considered an arsenic metal in drinking water. According to the IARC classification of inorganic arsenic compounds is located in Group 1 (carcinogenic to humans). For this reason, arsenic removal from water resources is a priority health programs. In this context, technologies are discussed to arsenic removal from drinking water. This study was conducted to remove arsenic from drinking water by the method of reverse osmosis membrane and adsorption process of zero-valent iron nanoparticles were done in mohaghegh ardabili university, due to the possible presence of arsenic in the drinking waters walls of Ardabil city. For testing, the parameters of temperature, concentrations of arsenic, PH, iron nanoparticle concentration and contact time were considered. In this study, variable of concentrations of arsenic (0.018, 0.025, 0.2, 0.5, 1, 1.5 and 2 mg/L), PH(4, 5, 6, 7, 8, 9), Temperature(4, 7, 10, 15, 20, 25, 30°C), were tested for reverse osmosis membrane, and in addition to 3 previous method concentration of iron nanoparticles(0.5, 1 and 1.5 g/L) and time(2, 5, 10, 15, 30 mint) were tested for nanoparticles iron method too. The results showed that the removal of arsenic in both methods, in the optimum of concentration of 1/5 mg/L and a temperature of 30 °C, PH 4 in acid mode by nanoparticles and 9 in buffer mode for reverse osmosis and 30 minutes by optimized of 1 and 1/5 g/L iron nanoparticle concentrations. According to the results we can say that the reverse osmosis process is significantly influence the removal of about 95 to 99 percent, also iron nanoparticles can be an inexpensive and efficient expression and the in situ in use. It's removal efficiency is above 98%.

Keywords: Arsenic, Reverse Osmosis, Nanoparticles zero valent iron, Ardabil.
University of Mohaghegh Ardabili
Faculty of Agricultural Technology and Natural Resources
Department of Water Engineering

Thesis submitted in partial fulfilment of the requirements for the degree of M.Sc. in Agricultural Engineering Irrigation and Drainage branch

Title:
Evaluation of Common Methods for Removal of Arsenic from Drinking Water
(Case study: Ardabil city)

Supervisor(s):
Dr. Javanshir Azizi Mobser

Advisor(s):
Dr. Assadollah Asady

By:
Niloufar Saboori

September-2015