دانشکده علوم کره آموزشی فیزیک

پایان‌نامه برای دریافت درجه کارشناسی ارشد در رشته فیزیک گراش هسته‌ای

عنوان:
اندازه‌گیری تجربی آمار شمارشی در ثبت شده بوسیله دزیمتر فولوکا و بررسی ارتباط آن با میزان رادون موجود در خاک منطقه شورابیل و فردگاه اردیbil

استاد راهنما:
دکتر فرهاد ذوالفقارپور

استاد مشاور:
محمد نیکوکشت

پژوهشکر:
حسین طاهرپور صومعه

باییز 1396
نام خانوادگی دانشجو: طاهربور صوعمه
عنوان پایان‌نامه: اندازه‌گیری ترجیح آمار شمارشی ذی‌لت شده بوسیله‌ی دزیمتر فولکا و بررسی ارتباط آن با میزان رادون موجود در خاک منطقه شورابیل و فرودگاه اردبیل

استاد راهنما: دکتر فرهاد ذوالفقاریور
استاد مشاور: مهندس محمد نیک‌صفت

مقطع تحصیلی: کارشناسی ارشد
گرایش: همراه
دانشگاه: حمق اردبیل

تاریخ دفاع: 26/7/1396
تعداد صفحات: 135

چکیده:
گاز رادون با نام شیمیایی Rn است که دارای عدد اتمی 86 می‌باشد. این گاز به‌روش و بی‌بو است و از واشی طبیعی اورانیوم، توریم و رادیوم حاصل می‌شود. رادون 220 پس از چندین واکنش از واشی اورانیوم 238 حاصل می‌شود و دارای نیمه عمر 3.82 روز است. رادون 220 که توران خونده می‌شود و پس از چندین واکنش توریم حاصل می‌شود یکی از اینهایهای طبیعی رادون است که دارای نیمه عمر ۵۴/۵۳/۵۴/۵۳ ثانیه می‌باشد و به همین دلیل اندازه‌گیری آن بسیار سخت است. رادون 219 که اکثربان خونده می‌شود و در زنجیره واشی اورانیوم 235 حاصل می‌شود دارای نیمه عمر ۹۱۷/۳ ثانیه می‌باشد و اهمیت چندانی در مطالعات و بررسی‌ها برخوردار نیست. به گزارش آژانس حفاظت محیط زیست (EPA) رادون بعد از سیگار به عنوان دومین عامل ایجاد سرطان بیش از ۵۰ درصد بایستی به اهمیت این گاز در کشف معدن‌های اورانیوم، پیش بینی زمین لرزه، ساخت و ساز در مناطق گذشته‌ای می‌باشد. رادون زیاد و مصالح ساختمانی تولید شده از چاک این مناطق، بررسی این گاز به عنوان یکی از اهداف مهم برای محققان و پزوهشگران شده است. در این پایان‌نامه نقطه‌بندی به صورت تصادفی با فاصله تقریباً یک‌کیلومتر در مناطق فرودگاه اردبیل و شورابیل در شهر اردبیل انتخاب شده و میزان رادون در خاک این مناطق اندازه‌گیری شده است. همچنین رادیواکتیویتی این مناطق نیز با دزیمتر فولکا اندازه‌گیری شده است. با استفاده از داده‌های تجربی به دست آمده و GIS نرم‌افزار نقشه‌ریزی و نقشه‌ریزی رادیواکتیویتی این مناطق تهیه شده است. سپس با مقایسه مقادیر اندازه‌گیری شده و پارامترهای مربوط به این داده‌ها برای این دو منطقه باهم، به تحلیل و بررسی خاک این مناطق می‌پردازیم.

کلید واژه‌ها: ۱- اورانیوم ۲- رادیوم ۳- رادون ۴- دزیمتر Fluke ۵- RAD7 ۶- ۵ Fluke
فهرست مطالب

فصل اول: آمار و خطای اندازه‌گیری‌های مستحکم

1-1 مقدمه...
1-2 تهیه و تنظیم داده..
1-2-1 داده‌ها..
1-2-2 فراوانی و فراوانی نسبی................................
1-2-3 معیارهای تمرکز...
1-2-4 معیارهای پراکندگی.................................
1-2-5 جدولی و برگستگی..
1-2-6 1-2-7 1-2-8 1-2-9 1-2-10 1-2-11
1-3 قوانین احتمال...
1-3-1 تعبیرهای مختلف احتمال.................................
1-3-2 احتمال با فضای نمونه با پایان....................
1-3-3 قضیه‌های بنیادی احتمال.................................
1-3-4 قوانین شمارش..
1-4 1-4-1-2-3-4-5-6-7-8
1-4-1 1-4-2 مدل احتمال شرطی.................................
1-5 1-5-1 متغیر تصادفی..
1-5-2 تابع توزیع..
1-5-3 تابع جکالی...
فصل دوم: منابع رادیواکتیو در محیط و ذر دریافتی

2-1 مقدمه ... 36
2-2 پرتو 37
2-3 پرتوهای پوپاساز ... 38
2-3-1 کمیته‌ها و یک های اندازه‌گیری تابش .. 38
2-3-2 پرتو ای .. 39
2-3-3 قانون واپاشی رادیواکتیو 39
2-3-4 منابع پرتو ای در محیط .. 40
2-3-5 هسته‌های پرتو ای منفرد 40
2-3-6 هسته‌های پرتو ای زنجیره‌ای 41
2-4 اکتیویتیه 42
2-5 ضرورت حفاظت در برابر تابش 43
2-6 استانداردهای ایمنی تابش .. 44
2-7 گاز رادیواکتیو رادون 45
2-7-1 ایزوتوب 222Rn (رادون) 46
2-7-2 ایزوتوب 222Rn (تورن) 48
2-7-3 دختران گاز رادون 50
2-8-1 سطح کار 50
2-8-2 Working Level Month (WLM) 50
2-8-3 ضریب تعادل .. 50
2-8-4 تأثیر رادون بر سلامتی 51
فصل سوم: دزیمتر Fluke و رادون‌متر RAD7

۱-۶ مقدمه
۷-۱۹ شماره‌گزاره‌ی گازی
۲۰-۳۱ دزیمتر FLUKE451
۳۲-۳۴ نکات کلیدی
۳۵-۴۳ آلفا: آشکارساز حالت جامد RAD7
۴۴-۵۲ مکانیزم آشکارسازی گاز رادون در RAD7
۵۳-۶۱ بررسی منابع گاز رادون با RAD7
۶۲-۷۰ پنجره‌های RAD7
۷۱-۸۳ اندام‌های گازی گاز رادون توسط سیستم RAD7
۸۴-۹۲ شروع کار با دستگاه RAD7
۹۳-۱۰۲ تبادل بین ایزوتوپ‌ها
۱۰۳-۱۱۲ استفاده در خاک بوسیله RAD7
۱۱۳-۱۲۱ استفاده در آب
۱۲۲-۱۳۱ نرم‌افزار Capture.Win
۱۳۲-۱۴۰ تغییرات زمین‌زنده در RAD7

فصل چهارم: نتایج و پایش‌های بانفوشت

۱۴۱-۱۴۹ مکان مورد مطالعه
۱۵۰-۱۶۰ دلایل انتخاب مناطق فرودگاه اردبیل و شرکاگاه تولید و کارکردهای مطالعه
۱۶۱-۱۷۰ اهمیت موضوع
۱۷۱-۱۸۰ شروط انتخاب گاز رادون در خاک مناطق فرودگاه اردبیل و شرکاگاه
5-6 اندازه‌گیری ذً گام‌ی مَنياق فرودگاه اردبیل و شورابیل

4-6 برآش پارامترهای مربوط به داده‌های تجربی اندازه‌گیری شده و

رسم نمودارها... 116

122

7-1 تهیه نقشه‌ها...

۱۲۹

8-6 نتیجه‌گیری و پیش‌نهاد..

131

فهرست منابع و مآخذ..
فهرست جدول‌ها

عنوان...صفحه

 Jade 1: درصد خطای استاندارد شمارش n ..30
 Jade 2: کمیتهای و یکه‌ای اندازه‌گیری تایید NRC ..39
 Jade 2-2: حد ذ ذ توجیه پذیر سالانه پیشنهادی ..45
 Jade 2-3: فلزات متوسط رادون و درصد مصرف منابع آب57
 Jade 2-1: برخی ویژگی‌های دزیمتر Fluke451 ..76
 Jade 3-1: مقدار Rn222، طول و عرض جغرافیایی و ارتفاع نقاط مورد آزمایش در فرودگاه اردبیل..............................78
 Jade 3-2: مقدار Rn222، طول و عرض جغرافیایی و ارتفاع نقاط مورد آزمایش در شهرابیل..........................85
 Jade 3-3: مقدار ذ گاما، طول و عرض جغرافیایی و ارتفاع نقاط مورد آزمایش در فرودگاه اردبیل104
 Jade 3-4: مقدار ذ گاما، طول و عرض جغرافیایی و ارتفاع نقاط مورد آزمایش در شهرابیل.................................105
 Jade 4-5: مقدار اندازه‌گیری ذ گاما و ثبت تکرار هر ذ (آزمایش‌های 6 تا 5) مربوط به فرودگاه اردبیل و آزمایش‌های 6 تا 10 مربوط به شهرابیل)..............................110
 Jade 4-6: مقدار پارامترهای برآش شده مربوط به آزمایش‌های فرودگاه اردبیل..114
 Jade 4-7: مقدار پارامترهای برآش شده مربوط به آزمایش‌های شهرابیل...116

فهرست شکل‌ها
شکل ۱: انحراف میزان رادون از میزان بیشینه شده و بروز زمین نزدیک... ۴۶
شکل ۲: رابطه عکس غلظت رادون در محیط با تغییرات فشار و بروز اختلال... ۴۷
شکل ۳: شکل هندسی یک شمارشگر نانسی استوانه‌ای... ۴۳
شکل ۴: ارتقاء تیم‌های ایجاد شده توسط شمارشگر های گازی مختلف بر حسب ولتاژ مورد استفاده... ۷۴
شکل ۵: دزیمتر Fluke451... ۷۵
شکل ۶: پاسخ انرژی هدلم نوعی P451... ۷۶
شکل ۷: توزیع پواسون با m = ۵... ۷۴
شکل ۸: توزیع بهنجار گاوسی... ۷۵
شکل ۹: تراز های انرژی در تبدیل رادیوم به رادون... ۴۸
شکل ۱۰: قسمی از زنجیره واباشی اورانیوم U۲۳۸، از رادون... ۴۷
شکل ۱۱: CUSO4... ۴۶
شکل ۱۲: میزان از میزان پیشینی شده و بروز... ۴۶
شکل ۱۳: نجوه واباشی عناصر رادیواکتیو در مداهی مختلف و کسی در ذات و آلفا... ۴۲
شکل ۱۴: توزیع آستانه‌های فردی در میان یک جمعیت... ۴۴
شکل ۱۵: توزیع دوجمله‌ای برای... ۲۲
شکل ۱۶: نمودارهای ون... ۱۱
شکل ۱۷: نتایج چگالی و نتایج توزیع یک متغیر تصادفی... ۱۷
شکل ۱۸: توزیع دوجمله‌ای برای... ۲۲
شکل ۱۹: توزیع بهنجار گاوسی... ۷۵
شکل ۲۰: توزیع بال‌زمانه... ۷۶
شکل ۲۱: نکات واپشی و تغییرات فشار و بروز... ۷۴
شکل ۲۲: مقایسه مرك و میر سالانه رادون با مرك و میرهای دیگر در آمریکا... ۵۶
شکل ۲۳: درصد دز درکاتی سالانه از میانه مختلف... ۴۴
شکل ۲۴: مقایسه مرك و میر سالانه رادون با مرك و میرهای دیگر در آمریکا... ۵۶
شکل ۲۵: فرار رادون از عمل زمین با منافذ و تراواتی پایین به سطح زمین از طریق گسل‌ها... ۵۹
شکل ۲۶: رابطه بین تغییرات فشار بارومتریک با تغییرات غلظت رادون... ۵۹
شکل ۲۷: چند نمونه از سوزن‌هایی که برای تزریق رادون به بافت مورد استفاده قرار می‌گیرد... ۶۴
شکل ۲۸: نمودارهای ون... ۱۱
شکل ۲۹: نکات واپشی و تغییرات فشار و بروز... ۷۴
شکل ۳۰: Fluke451... ۷۵
شکل ۳۱: دزیمتر... ۷۵
شکل ۳۲: پاسخ انرژی هدلم نوعی P۴۵۱... ۷۶
شکل ۳۳: شکل هندسی یک شمارشگر نانسی استوانه‌ای... ۴۳
شکل ۳۴: ارتقاء تیم‌های ایجاد شده توسط شمارشگر های گازی مختلف بر حسب ولتاژ مورد استفاده... ۷۴
شکل ۳۵: دزیمتر Fluke451... ۷۵
شکل ۳۶: پاسخ انرژی هدلم نوعی P۴۵۱... ۷۶
شکل ۳۷: رابطه عکس غلظت رادون در محیط با تغییرات فشار و بروز اختلال... ۴۷
شکل ۳۸: نمودارهای ون... ۱۱
شکل ۳۹: نکات واپشی و تغییرات فشار و بروز... ۷۴
شکل ۴۰: Fluke451... ۷۵
شکل ۴۱: دزیمتر... ۷۵
شکل ۴۲: پاسخ انرژی هدلم نوعی P۴۵۱... ۷۶
شکل ۴۳: شکل هندسی یک شمارشگر نانسی استوانه‌ای... ۴۳
شکل ۴۴: ارتقاء تیم‌های ایجاد شده توسط شمارشگر های گازی مختلف بر حسب ولتاژ مورد استفاده... ۷۴
شکل ۴۵: دزیمتر Fluke451... ۷۵
شکل ۴۶: پاسخ انرژی هدلم نوعی P۴۵۱... ۷۶
د) یافته‌های مختلف در نرم‌افزار Capture.win

۱۴- نمودار تغییرات قدرت گاز رادون و تورون برای یک نمونه آزمایش گردیده

۱۵- مکانیزم اندام‌های مختلف در نرم‌افزار Capture.win

۱۶- نمایشگر ناحیه و ناحیه پیرتر در نرم‌افزار Capture.win

۱۷- میانگین داده‌ها (سمت چپ) و طیف دختران رادون و تورون در پنجره‌های مختلف (سمت راست)

۱۸- نمودار ناهنجاری‌های مختلف در نرم‌افزار Capture.win

۱۹- نمایشگر ناحیه و ناحیه پیرتر در نرم‌افزار Capture.win

۲۰- نمایشگر ناحیه و ناحیه پیرتر در نرم‌افزار Capture.win

۲۱- نمایشگر ناحیه و ناحیه پیرتر در نرم‌افزار Capture.win

۲۲- نمایشگر ناحیه و ناحیه پیرتر در نرم‌افزار Capture.win

۲۳- نمایشگر ناحیه و ناحیه پیرتر در نرم‌افزار Capture.win

۲۴- نمایشگر ناحیه و ناحیه پیرتر در نرم‌افزار Capture.win

۲۵- نمایشگر ناحیه و ناحیه پیرتر در نرم‌افزار Capture.win

۲۶- نمایشگر ناحیه و ناحیه پیرتر در نرم‌افزار Capture.win

۲۷- نمایشگر ناحیه و ناحیه پیرتر در نرم‌افزار Capture.win

۲۸- نمایشگر ناحیه و ناحیه پیرتر در نرم‌افزار Capture.win

۲۹- نمایشگر ناحیه و ناحیه پیرتر در نرم‌افزار Capture.win

۳۰- نمایشگر ناحیه و ناحیه پیرتر در نرم‌افزار Capture.win

۳۱- نمایشگر ناحیه و ناحیه پیرتر در نرم‌افزار Capture.win

۳۲- نمایشگر ناحیه و ناحیه پیرتر در نرم‌افزار Capture.win

۳۳- نمایشگر ناحیه و ناحیه پیرتر در نرم‌افزار Capture.win

۳۴- نمایشگر ناحیه و ناحیه پیرتر در نرم‌افزار Capture.win

۳۵- نمایشگر ناحیه و ناحیه پیرتر در نرم‌افزار Capture.win

۳۶- نمایشگر ناحیه و ناحیه پیرتر در نرم‌افزار Capture.win

۳۷- نمایشگر ناحیه و ناحیه پیرتر در نرم‌افزار Capture.win

۳۸- نمایشگر ناحیه و ناحیه پیرتر در نرم‌افزار Capture.win
شکل ۴-۱۸: نتیجه تحلیل نتایج آزمایش توسط نرم افزار Capture RAD7 برای نقطه شماره ۵ فرودگاه اردبیل.

شکل ۴-۱۹: نتیجه تحلیل نتایج آزمایش توسط نرم افزار Capture RAD7 برای نقطه شماره ۶ شورابیل.

شکل ۴-۲۰: نتیجه تحلیل نتایج آزمایش توسط نرم افزار Capture RAD7 برای نقطه شماره ۷ شورابیل.

شکل ۴-۲۱: نتیجه تحلیل نتایج آزمایش توسط نرم افزار Capture RAD7 برای نقطه شماره ۸ شورابیل.

شکل ۴-۲۲: نتیجه تحلیل نتایج آزمایش توسط نرم افزار Capture RAD7 برای نقطه شماره ۹ شورابیل.

شکل ۴-۲۳: نتیجه تحلیل نتایج آزمایش توسط نرم افزار Capture RAD7 برای نقطه شماره ۱۰ شورابیل.

شکل ۴-۲۴: نتیجه تحلیل نتایج آزمایش توسط نرم افزار Capture RAD7 برای نقطه شماره ۱۱ شورابیل.

شکل ۴-۲۵: نتیجه تحلیل نتایج آزمایش توسط نرم افزار Capture RAD7 برای نقطه شماره ۱۲ شورابیل.

شکل ۴-۲۶: نتیجه تحلیل نتایج آزمایش توسط نرم افزار Capture RAD7 برای نقطه شماره ۱۳ شورابیل.

شکل ۴-۲۷: نتیجه تحلیل نتایج آزمایش توسط نرم افزار Capture RAD7 برای نقطه شماره ۱۴ شورابیل.

شکل ۴-۲۸: نتیجه تحلیل نتایج آزمایش توسط نرم افزار Capture RAD7 برای نقطه شماره ۱۵ شورابیل.

شکل ۴-۲۹: نتیجه تحلیل نتایج آزمایش توسط نرم افزار Capture RAD7 برای نقطه شماره ۱۶ شورابیل.
شکل ۴-۲۵: نمودار تابع گاوسی در اندام‌هایی که دارد بر حسب تکرار و پارامترهای بارزمانشده مربوط به آن برای آزمایش شماره ۲ شورابیل

شکل ۴-۲۶: نمودار تابع گاوسی در اندام‌هایی که دارد بر حسب تکرار و پارامترهای بارزمانشده مربوط به آن برای آزمایش شماره ۳ شورابیل

شکل ۴-۲۷: نمودار تابع گاوسی در اندام‌هایی که دارد بر حسب تکرار و پارامترهای بارزمانشده مربوط به آن برای آزمایش شماره ۴ شورابیل

شکل ۴-۲۸: نمودار تابع گاوسی در اندام‌هایی که دارد بر حسب تکرار و پارامترهای بارزمانشده مربوط به آن برای آزمایش شماره ۵ شورابیل

شکل ۴-۲۹: شماره گذاری نقاط انتخاب شده برای مطالعه در منطقه فرودگاه اردبیل

شکل ۴-۳۰: محیط و مساحت منطقه مورد مطالعه فرودگاه اردبیل

شکل ۴-۳۱: نقشه راستر شده برای رادون ۲۲۲ در منطقه مورد مطالعه فرودگاه اردبیل

شکل ۴-۳۲: نقشه راستر شده برای ذُج گاما منطقه مورد مطالعه فرودگاه اردبیل

شکل ۴-۳۳: ترسیم پراکندگی رادون ۲۲۲ بر روی نقشه ماهموارهای منطقه مورد مطالعه فرودگاه اردبیل

شکل ۴-۳۴: ترسیم پراکندگی ذُج گاما بر روی نقشه ماهموارهای منطقه مورد مطالعه فرودگاه اردبیل

شکل ۴-۳۵: شماره گذاری نقاط انتخاب شده برای مطالعه در منطقه شورابیل

شکل ۴-۳۶: محیط و مساحت منطقه مورد مطالعه شورابیل در داخل شهر اردبیل

شکل ۴-۳۷: نقشه راستر شده برای رادون ۲۲۲ در منطقه مورد مطالعه شورابیل

شکل ۴-۳۸: نقشه راستر شده برای ذُج گاما منطقه مورد مطالعه شورابیل

شکل ۴-۳۹: ترسیم پراکندگی رادون ۲۲۲ بر روی نقشه ماهموارهای منطقه مورد مطالعه شورابیل

شکل ۴-۴۰: ترسیم پراکندگی ذُج گاما بر روی نقشه ماهموارهای منطقه مورد مطالعه شورابیل
فصل اول

آمار وخطای اندازه‌گیری ۴۵ی‌بستای
۱- مقدمه

از آنجا که همه‌ی نتایج تجربی دارای خطاهستند و نتیجه‌گیری‌هایشان به‌طور گسترده‌ای بدون خطا همگون باید با آن بی‌معناست، اهمیت این فصل قابل درک است. همچنین در این فصل به بررسی آمار در سطح مورد نیاز برای اندمازگیری تابش‌ها و تحلیل نتیجه‌های آن‌ها می‌پردازیم. کسانی که آزمایش‌های مستحکم انجام می‌دهند برای تحلیل آزمایش‌هایی که طبیعت آماری دارند، همچنین بررسی خطاهای و برازش یک تابع بر داده‌های تجربی، به آمار نیاز دارد (سولفانیدیس، ۱۹۳۸).

۲- تهیه و تنظیم داده‌ها

جمعیت. مجموعه افراد با چیزهایی که می‌خواهیم یک‌پا چند ویژگی درباره آنها مطالعه کنیم را یک جمعیت می‌نامیم. مثلاً جمعیت نوزادانی که در سال به دنیا آمده آن‌ها نظر مصرف شیر خشک، مفهوم جمعیت از نظر آمار خیلی وسیعتر از مفهوم واژه‌ای آن یا مفهوم سازمانی آن می‌باشد. برای انجام هر کار آماری روی یک جمعیت، باید آن جمعیت و ویژگی‌های مورد مطالعه، بدون هرگونه ابهام قبل مشخص شوند.

نموده. قسمتی از جمعیت که طبق ضوابطی مقبول انتخاب می‌شود و مطالعه آن به‌جای مطالعه تمام جمعیت مقدور است، نمونه‌ای از جمعیت می‌نامند. معمولاً به مصداق مشت نمونه خروار است. نتیجه حاصل از نمونه را به تمام جمعیت تعمیم می‌دهند، ولی این کار احتیاطیان دارد، زیرا هر مشتی نمی‌تواند نمونه خروار باشد و قطعاً به‌عرض در انتخاب‌شده و اندمازی که در این نمونه‌گذی نقش مهمی دارد. مسئله‌ای انتخاب یک نمونه‌گذار به‌ندردی مهم است که قسمت زیادی از

1- Soulfanidis
تقدیر احتمال و آمار به آن اختصاص دارد (بهبودیان، ۱۳۸۴).

۱-۲-۱ داده‌ها

فرض کنید می‌خواهیم ویژگی خاص یک جمعیت را که معمولاً یک متغیر است، مطالعه کنیم. اگر این متغیر را در مورد یک یک افراد جمعیت یا نمونه‌ای از آن با مقداری مناسب اندازه‌گیری کنیم، یک مجموعه از اعداد به دست می‌آید که آن را داده‌ها می‌نامند. داده‌ها دو نوعی هستند:

الف) داده‌های گسته‌ای: از اندازه‌گیری با مقياس‌های اسمی، ترتیبی، یا شمارشی بدست می‌آیند. داده‌های گسته‌ای را داده‌های جدا از هم می‌نامند.

ب) داده‌های پیوسته: از اندازه‌گیری با مقياس‌های فاصله‌ای یا نسبی بدست می‌آیند.

داده‌ها اغلب بصورت انبوهی از اعداد ارائه می‌شوند و به خودی خود خام می‌باشند. برای این که بتوان آن را پخته کرد و حقایق را جویا شد باید:

الف) آن‌ها را در جدول‌های تنظیم کرد.

ب) از روی جدول‌ها، نمودارهای آن‌ها را رسم نمود.

ج) آن‌ها را در یک یا چند عدد مختصر کرد.

تنها بعد از طی این مراحل می‌توان، قوانین شناسی حاکم بر آن‌ها را پیدا کرده و به برداشت‌های آماری و تهیه کزارش نهایی درباره ویژگی مورد مطالعه پرداخت (بهبودیان، ۱۳۸۴).
۱-۲ فراوانی و فراوانی نسبی

امکان چیزی از نوع k، به ترتیب با تعدادهای f_1, f_2, \ldots, f_k تشكیل شده باشند، این تعدادها را فراوانی‌های نسبی این چیزها می‌گویند. فراوانی‌های نسبی را به ترتیب با r_1, r_2, \ldots, r_k نشان می‌دهند. واضح است که برای $i = 1, 2, \ldots, k$

$$
\sum_{i=1}^{k} f_i = n, \quad 1 \leq f_i < n, \quad \sum_{i=1}^{k} r_i = 1, \quad \frac{1}{n} \leq r_i < 1
$$

(۱) می‌باشد.

۲-۲ معیارهای تمرکز

با استفاده از جدول فراوانی و نمودارهای آماری، می‌توان تا حدودی دانستهای هفته در داده‌ها را مختصر و محسوس کرد. با این حال سعی می‌شود تا این دانسته‌ها را به صورت یک یا چند عدد معقول درآورد، تا هم بتوان ابهاد کلی درباره ویژگی مورد مطالعه به دست آورد و هم نتیجه مطالعات را به سادگی گزارش داد. چنین اعدادی که معمولاً در حوالی مرکز منحنی فراوانی می‌باشند، معیارهای تمرکز نامیده می‌شوند (بهبودیان، ۱۳۸۴).

فرض می‌کنیم تعداد داده‌ها با n و به صورت x_1, x_2, \ldots, x_k با فراوانی‌های f_1, f_2, \ldots, f_k خلاصه شده باشند. در صورتی که داده‌ها پیوسته باشند، x_i را نماینده رده‌ها می‌گیریم.

میانگین حسابی. مجموع داده‌ها تقسیم بر تعداد آنها، یعنی:
ميانگین داده‌ها می‌گویند هرگاه تمام فراوانی‌ها برابر ۱ باشندداریم و در این حال \bar{x} را در زبان معمولی مقدار می‌نامند.

$$\bar{x} = \frac{\sum_{i=1}^{k} f_i x_i}{n}$$ \hspace{1cm} (۱)

آنگاه:

$$\bar{x}_\omega = \sum_{i=1}^{k} \omega_i x_i$$ \hspace{1cm} (۲)

را معدل وزنی اعداد $\omega_1, \omega_2, ..., \omega_k$ با وزنه‌ای $x_1, x_2, ..., x_k$ از یک نوع معدل وزنی می‌نامند. بنابراین میانگین (۲-۱) هم یک نوع معدل وزنی می‌باشد که در آن $\omega_i = \frac{f_i}{n}$.

میانه. عدد m را میانه می‌نامند هرگاه تقیباً تعداد m کوچکتر باشد. نصف داشه از m نسبت به سایر داده‌ها بیشتر نماید. هم‌اکنون آن نسبت به سایر داده‌ها بیشتر باشد. نیم‌تشیع می‌شود و آن را با نشان می‌پنداریم. داده‌ای که فراوانی آن بیشتر باشد به عنوان نماد اختیار می‌کنیم و داشه‌ها را دوهمایی می‌گوییم، مشروط بر اینکه این دو داده پهلوی هم نباشند. اگر پهلوی هم باشند، نصف مجموع آنها را نمایند. اگر تمام داشه‌ها دارای فراوانی‌های مساوی باشند می‌گوییم داشه‌ها بدون نمایند. شکل (۱-۱) و شکل (۲-۱) منحنی‌هایی را نشان می‌دهند.
شکل ۱۶-۱: منحنی فراوانی یک نمایی

شکل ۱۶-۲: منحنی فراوانی دو نمایی

۱-۶ معيارهای پراکندگی

معلول واژ درد یک جمعیت از نظر ویژگی مورد مطالعه باهم تفاوت دارند و این خود مهمترین انگیزه برای پژوهشگری و کاربرد فن آمار می‌باشد. مشاهده تفاوت و تنوع، انسان را به کنجکاوی درباره رموز طبیعت امور اجتماعی، تربیتی و صنعتی وادار می‌کند. مثلاً دانش آموزان یک کلاس از نظر ادب و استعداد با هم فرق دارند. لامپهای ۶۰ وات از نظر طول عمر یکسان نیستند. میزان این تفاوت‌ها را چگونه می‌شود سنجید؟ و چطور می‌توان درباره آنها قضاوت کرد؟

همان طور که قبل گفته شد، داده‌ها را معمولاً به صورت یک عدد به نام معيار تمرکز خلاصه می‌کنند و قسمتی از اطلاعات موجود در آنها را در این عدد منعکس می‌سازند. ولی لازم است درباره تفاوت داده‌ها با یکدیگر و میزان پراکندگی و تجمع آنها به نحوی مطالعه کرد.
برد. در در یک داده که مجموعه‌ای از اعداد می‌باشد، کوچک‌ترین و بزرگ‌ترین داده باشند.

\[R = x_n - x_1 \] (4)

باوجود اینکه این معیار وسعت پراکندگی را منعکس می‌کند و طرز محاسبه آن ساده می‌باشد، باینگر خویی برای پراکندگی داده نیست زیرا این معیار فقط به بزرگ‌ترین و کوچک‌ترین داده بستگی دارد و اگرچه داده‌ها تغییر کنند، تأثیری در برد ایجاد نخواهد شد.

میانگین انحراف‌ها. قدر مطلق از میانگین

\[d = \frac{\sum_{i=1}^{k} f_i |x_i - \bar{x}|}{n} \] (5)

را میانگین انحراف‌ها می‌نامند. واضح است که در قدر داده‌ها از میانگین دورتر باشد، بزرگتر خواهد بود. لازم بذکر است ممکن است مثبت یا منفی و یا صفر باشد.

میانگین انحراف‌ها معیار خویی برای میزان پراکندگی داده‌ها می‌باشد، ویا طرز محاسبه و کشف خواص ریاضی آن به علت وجود قدر مطلق، قدری بی‌م){8 در است. بنابراین به جای آن معیار دیگری به نام واریانس و یا جذر آن به نام انحراف استاندارد را به کار می‌برند.

واریانس و انحراف استاندارد. واریانس در لغت به معنی تفاوت و تغییر است. از فرمول:
\[s^2 = \frac{\sum_{i=1}^{k} f_i (x_i - \bar{x})^2}{n} \]
\[\text{که میانگین جذر انحراف‌ها می‌باشد بایست میآورند. اگر تمام داده‌ها به } \bar{x} \text{ نزدیک باشند، } s^2 \text{ کوچک می‌شود. به ویژه اگر تمام } x_i \text{ با } \bar{x} \text{ باشند } s^2 \text{ صفر می‌شود. این حقیقی نشان می‌دهد که } s^2 \text{ معیار خوبی برای سنجش پراکندگی و تغییر بین داده‌ها نسبت به میانگین می‌باشد. با استفاده از جیر مقدماتی فرمول (1-4) به صورت زیر در می‌آید:} \]
\[s^2 = \frac{1}{n} \sum_{i=1}^{k} f_i x_i^2 - \bar{x}^2 \]
\[اگر جمله اول فرمول بالا را که میانگین } \bar{x}^2 \text{ باشد، با } \text{ نشان دهیم، داریم:} \]
\[s^2 = \bar{x}^2 - \bar{x}^2 \]
\[\text{بنابراین واریانس برابر است با میانگین توان دوم داده‌ها. میانگین کمیت } x_1, x_2, \ldots, x_k \text{ این رو جذر مثبت آن یعنی } s \text{ را که انحراف استاندارد نامیده می‌شود بکار می‌برند.} \]

\[\text{ضریب تغییر. نسبت انحراف استاندارد به میانگین، یعنی:} \]
\[V = \frac{s}{\bar{x}} \]
را گزارش کرد به صورت درصد بیان می‌شود، ضرب تغییر می‌شود. این ضرب که به واحد اندازه‌گیری بستگی ندارد، در عمل برای مقایسه به کار می‌رود.

1-5 چولگی و برجستگی

طبقه‌بندی منحنی فراوانی، منحنی فراوانی نرمال استاندارد می‌باشد که معادله مختصاتی آن به صورت

\[y = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \]

است. این منحنی زنگ گونه که از نظر تقارن، کشیدگی، پختی، تناسب و زیبای خاصی دارد. مساحت زیر منحنی به نحوی طبیعی طبق شکل (1-3) توزیع شده است.

![شکل 1-3: منحنی نرمال استاندارد](image)

کشتوار و گشتاور مركزی داده‌ها. فرض کنید که به ترتیب با فراوانی‌های \(f_1, f_2, \ldots, f_k \) به سری داده \(x_1, x_2, \ldots, x_k \) یک سری داده تایی باشد. میانگین توان \(r \) ام \(x_i \) و \(\bar{x} \) یا \(x_i - \bar{x} \) به تعداد \(n \) به صورت

\[
\begin{align*}
m'_r &= \frac{\sum_{i=1}^{k} f_i x_i^r}{n} \\
m_r &= \frac{\sum_{i=1}^{k} f_i (x_i - \bar{x})^r}{n}
\end{align*}
\]

(1)
را گشتاور r_1، و گشتاور مرکزی r_2 داده‌ها می‌نامند. \bar{r} معمولاً عدد طبیعی است. واضح است که برابر m_1 برای صفر و m_2 برابر s^2 می‌باشد. اگر داده‌ها نسبت به میانگین، متقارن باشند، گشتاورهای مرکزی فرد برای صفر هستند.

چدولی. میزان عدم تقارن منحنی فراوانی را چولگی می‌نامند. فرض کنید \bar{x} میانگین، m میانه، s انحراف استاندارد، m_3 گشتاور مرکزی سوم باشند. هرکدام از فرمول‌های زیر را می‌توان به عنوان معيار چولگی به کار برد.

$$b_1 = \frac{\bar{x} - M}{s}$$ ضریب چولگی اول پیرسن

$$b_2 = \frac{3(\bar{x} - m)}{s}$$ ضریب چولگی دوم پیرسن

$$g = \frac{m_3}{s^2}$$ ضریب گشتاوری چولگی

در صورتیکه داده‌ها نسبت به میانگین متقارن باشند، ضرایب بالا صفر خواهد شد.

برجستگی. میزان کشیدگی یا پختی منحنی فراوانی را نسبت به منحنی نرمال استاندارد، برجستگی آن می‌نامند. فرض کنید گشتاور مرکزی چهارم و انحراف استاندارد باشند m_4 و s به ترتیب. k به عدد 3 نزدیک می‌باشد، معيار برجستگی را از فرمول

$$k = \frac{m_4}{s^4} - 3$$
بدست می‌آورند. بر حسب آنکه k مثبت یا منفی باشد، منحنی فراوانی کشیده یا پخ می‌شود. اگر نزدیک صفر باشد، بر جستگی منحنی فراوانی طبیعی است (به‌پردازان، ۱۳۸۷).

۱-۲-۱ قوانین احتمال

انسان به علت عدم توانایی در کشف تمام رموز عالم و عدم اطمینان در برابر حوادث روزگار مجبور است مفاهیمی از قبیل تصادف و شانس را به عنوان پارهایی از زندگی روزانه بپذیرد. با این حال دانشمندان همواره تلاش کرده‌اند تا از راه جبری و مشاهده به کمک علم و تکنولوژی تا آنجا که مقدور است علت پیداها را کشف نمایند و عدم اطمینان را کاهش دهد.

۱-۲-۲ تعبیرهای مختلف احتمال
الف) تعبیر احتمال به هر روش همشانسی. هرگاه فضای نمونه یک آزمایش از n پیشامد ساده تشکیل شده باشد که از نظر رخ دادن هیچکدام بر دیگر برتری نداشته باشد، می‌گویند این پیشامدها همشانس است. اگر کل احتمال را به کار بگیریم، احتمال رخ دادن هر یک از این پیشامدهای ساده می‌شود: $\frac{1}{n}$. مثلاً در بازی شیر و خ恶性 اگر سکه کاملاً معمول و سالم باشد، پیشامدهای H و T و احتمال رخ دادن هر کدام $\frac{1}{2}$ است.

ب) تعبیر احتمال به روش فراوانی نسبی.

فرض آزمایشی را تحت شرایط یکسان r بار تکرار می‌کنیم. فرض n آزمایش کنید r بار پیشامد E در این آزمایش رخ دهد. می‌گویند r فراوانی n در این آزمایش E فراوانی و کسر $\frac{r}{n}$ فراوانی نسبی پیشامد E
احتمال با فضای نمونه با پایان

یک مدل احتمال با فضای نمونه با پایان عبارت است از:

الف- مجموعه‌ی نام‌نهی‌ی فضایی نمونه به نام فضای نمونه

با فضای پیشامدهای ساده.

ب- عدد‌های مثبت $p_1, p_2, ..., p_k$ به طوری که هر e_i با p_i مترادف باشد.

عدد مثبت p_i را احتمال پیشامد ساده e_i نویسیم و می‌گوییم $P(e_i) = p_i$.

احتمال مجموعه‌ای از اعضای مجموعه S توزیع شده است تصویر نمایی می‌تواند را به عنوان جرم e_i تعبیر کرد.

احتمال هر پیشامد: اگر فضای نمونه با پایان باشد، هر پیشامد e_i ساده از S و هر زیر مجموعه‌ای از S می‌باشد.

احتمال پیشامد E برای است با مجموع احتمال‌های $E = \bigcup_{e_i \in E} e_i$ تشکیل می‌شود. مثل اگر $E = \{e_1, e_4, e_5\}$ آنگاه $P(E) = p_1 + p_4 + p_5$.

توجه داشته باشید، واضح است که $P(\emptyset) = 0$ و $P(S) = 1$.
2-3-1 قضیه‌های بین‌یادی احتمال

عمل مجموعه‌ای که روی بیشماره‌ای می‌توان انجام داد، درست مانند عمل روحی مجموعه‌ها می‌باشد. نمودار ون شکل (2-4) این مجموعه‌ها را نشان می‌دهد (بهبودیان، 1387).

شکل 2-4: نمودارهای ون

اگر در نمودارهای ون شکل (2-4) مساحت هر مجموعه را به عنوان احتمال بیشمار نظر آن تلقی کنیم، با محاسبه قسمت‌های هاشور دار معلوم می‌شود که:

\[
P(F - E) = P(F) - P(E \cap F)\]

\[
P(E') = 1 - P(E)\]

\[
P(E \cup F) = P(E) + P(F) - P(E \cap F)\]

\[
P(F - E) = P(F) - P(E)\quad \text{آنگاه } E \subset F\]

\[
P(E \cup F) = P(E) + P(F)\quad \text{آنگاه } E \cap F = \emptyset\]

اگر
2-۱ قوانین شمارش
برای محاسبه احتمال نیاز به شمارش فضای نمونه وجود دارد. در موارد ساده مانند پرتاب دو یا سه بار یک سکه به راحتی می‌توان تعداد حالت‌های فضای نمونه را شمارد. اما شرایط همیشه به این شکل نیست مثل اگر تعداد این آزمایش‌ها ۱۰۰ یا ٢٠٠ یا بیشتر باشد دیگر امکان شمارش حالت‌های فضای نمونه به این راحتی نخواهد بود. در این گونه موارد باید به طور غیرمستقیم تعداد اعضای مجموعه را تعیین نمود.

اصول شمارش. فرض کنید که m به طریق با نام‌های y1, y2,..., yn می‌توان با طریق با نام‌های x1, x2,..., xm انجام داد. اصول شمارش عبارتند از:

الف- اصل جمع برای شمارش: اگر انجام کار L به n + m منوط به A به طریق با نام‌های y1, y2,..., yn می‌توان با طریق با نام‌های x1, x2,..., xm انجام کار B باشد، آنگاه کار A یا B انجام داده می‌شود. این اصل را اصل جمع برای شمارش می‌گویند.

ب- اگر انجام کار L به طریق می‌توان انجام داد. این mn منوط به A و B باشد، آنگاه کار L به طریق می‌توان انجام داد. این اصل را اصل ضرب می‌گویند و در آن تکیه بر روی و می‌پیامد.

به عنوان مثال فرض کنید فرتن از دانشکده به منزل (کار L)، با تاکسی (کار A) از سه راه یا با اتوبوس (کار B) از دو راه امکان داشته باشد. بنابراین به پنج طریق با تاسی بای جای اتوبوس می‌توان از دانشکده به منزل رفت.

B و A به طریق می‌توان انجام بپایی کار L منوط به انجام بپایی کار L از سه راه یا با اتوبوس (کار A) از دو راه و با اتوبوس از پارک شهر تا منزل (کار B)
امکان داشته باشد. بنابراین به شش طریق با تاکسی و با اتوبوس می‌توان از دانشکده به منزل رفت.

فرمول‌های شمارش. هرگاه بخواهیم چیز متمایز را طبق قاعده‌ای مشخص مربوط کنیم، معمولاً به چند راه می‌توان این کار را انجام داد. شمارش این راه‌های گوناگون فرمول‌های مفیدی را بدهد.

الف- جایگشت N چیز. ترتیبی را که می‌توان چیز متمایز N چیز جایگشت را از چپ به راست به‌هلوی هم گذاشت، یک جایگشت از چیز N می‌گویند. مثلاً یک جایگشت از چیز 010203 است.

این جایگشت را به صورت زیر می‌توان نوشت:

\[1 \times 2 \times ... \times (N - 1) \geq N \]

\[= N! \]

(۱۴)

ب- جایگشت Rتای از N چیز. هرگاه از چیز N چیز متمایز R تایی از N چیز به‌هلوی هم را برگزیده، به ترتیب از چپ به راست به‌هلوی هم قرار دهیم، آن را یک جایگشت R تایی از N چیز می‌گویند و به صورت زیر بدست می‌آید:

\[R_{N,R} = N \times (N - 1) \times ... \times (N - R + 2) \times (N - R + 1) \]

\[= \frac{N!}{(N - R)!} \]

(۱۵)

ج- ترکیب R تایی از N چیز: هر گاه از N چیز متمایز، یک گروه R تایی را با هم یا یک به یک بدون توجه به ترتیب برگزینیم، آن را ترکیب R تایی از N چیز می‌گویند و به صورت زیر بدست می‌آید:

\[- \]
$$C_{N,R} = \binom{N}{R} = \frac{P_{N,R}}{R!} = \frac{N!}{R!(N-R)!} \quad (1)$$

۱-۵ مدل احتمال شرطی

اغلب در یک آزمایش، علم به این که پیشامدی رخ داده است، ممکن است در احتمال رخ دادن پیشامدی دیگر تأثیر کند. به طور کلی در یک آزمایش، مدل احتمال به عنوان پیشامدی که رخ داده است، دستخوش دگرگونی شده مدل جدیدی به نام احتمال شرطی بدست می‌آید. احتمال شرطی دارای اهمیت خاصی باشد و به‌کمک آن می‌توان تئوری احتمال را گسترش داد و بعضی مسائل پیچیده را حل کرد.

تعريف: فرض کنید A و B دو پیشامد دلخواه در فضای $P(B) \neq 0$ باشد. به طوری که احتمال $P(B)$ باشد به طوری که $P(A|B) = \frac{P(A \cap B)}{P(B)}$ شرط A شرط B رخ داده است، برابر است با:

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \quad (17)$$

اگر $P(B) = 0$, آنگاه $P(A|B)$ قابل تعريف نيست (بهبودیان). $P(A|B)$ از فرمول (1) داريم:

$$P(A \cap B) = P(B)P(A|B)$$

$$\quad (18)$$

به قانون ضرب احتمال‌ها معروف است.
پیشامده‌های مستقل. در صورتی که احتمال رخ دادن یک پیشامد بر دیگری تأثیری نداشت باشد آن را پیشامد مستقل می‌نامیم. در این صورت داریم \(P(A|B) = P(A) \). قانون ضرب احتمال نیز به صورت زیر در می‌آید:

\[
P(A \cap B) = P(A)P(B)
\]

(۱۹)

۱-۴ متغیر تصادفی

یک مدل احتمال، با فضای نمونه \(S \)، را در نظر می‌گیریم. تابع حقيقی \(X \) را که دامنه آن \(S \) و بردش زیر مجموعه‌ای از اعداد حقيقی است، یک متغیر تصادفی روی این مدل احتمال \(X \) می‌نامیم. برد \(X \) را با \(S_X \) نشان می‌دهیم و آن را به‌گاه می‌نامیم. در حقیقت، تابع \(X \) مجموعه \(S \) را ممکن است عددی نباشد باشد، یک مجموعه عددی تبدیل می‌کنند. متغیر تصادفی گسته و پیوسته: متغیر تصادفی را گسته می‌گویند هرگاه برد آن یعنی \(S_X \) یک مجموعه عددی شمارش‌پذیر باشد و آن را پیوسته می‌گویند هرگاه \(S_X \) یک فاصله عددی یا اجتماع چند فاصله عددی باشد.

۱-۵ تابع توزیع

فرض کنید \(X \) یک متغیر تصادفی روی یک مدل احتمالی باشد. تابع حقيقی

\[
F_X(x) = P(X \leq x)
\]

(۲۰)

را که در آن \(x \) یک عدد حقیقی است، تابع توزیع می-نامیم.
Family name: **Taherpour Someeh**
Name: **Hossein**

Title of Thesis:
Experimental Measurements of Counting Statistics of Recorded Dose with Fluke Dosimeter and Investigating its Relation with Radon Amount in the Soil of Shorabil and Ardabil Airport Region

Supervisor(s): Dr. Farhad Zolfagharpour
Advisor(s): M.Sc. Mohammad Nikoo Sefat

Graduate Degree: **M.Sc. / M.A.**
Major: Physics
University: Mohaghegh Ardabili
Specialty: Nuclear
Faculty: Science
Graduation date:
Number of pages: 135

Abstract:
Radon gas with a chemical symbol, Rn, has atomic number 86. This gas is a colorless and odorless and is natural decay of uranium, thorium and radium. Radon 222Rn can be achieved after several reactions from uranium 238U decay and has semi-life of 3.82 days. Radon 220Rn called toron one of the natural isotopes of radon that has a low half-life of 53.54 seconds, and for this reason it is very difficult to measure. Radon 219Rn called actinun, is obtained in the 235U and has half-life of 3.917 seconds and is not importance in research studies. According to a raport from the environmental protection agency (EPA) recognizes radon as the second agent causing lung cancer after the cigarettes, as well as with regard to the importance of this gas in the discovery of uranium mines, forecasting earthquakes, constructions in radon mines, and building materials produced from these areas, investigation of this gas has become one of the most important goals of researchers and scholar. In this thesis, the points were selected randomly with uniform distances in the regions of ardabil airport and shorabil, the amount of radon in the soil in this areas is measured. Also, these areas radioactivity was measured with a dosimeter fluke. Using experimenetal data obtained and GIS software, radon and radioactivity maps of tehe region has been prepared. Then, by comparing the measured values and parameters related to these data for these two regions together, to analyze the soil in this areas has been.

Keywords: 1- Fluke 2- Gamma dose 3- Radium 4- RAD7 5- Radon 6- Uranium
Thesis submitted in partial fulfilment of the requirements for the degree of M.Sc. in Nuclear Physics

Title:

Experimental Measurements of Counting Statistics of Recorded Dose with Fluke Dosimeter and Investigating its Relation with Radon Amount in the Soil of Shorabil and Ardabil Airport Region

Supervisor(s):

Farhad Zolfagharpour (Ph. D)

Advisor(s):

Mohammad Nikoo Sefat (M.Sc)

By:

Hossein Taherpour Someeh

October – 2017