دانشکده فناوری کشاورزی و منابع طبیعی
گروه آموزشی علوم خاک
پایان نامه برای دریافت درجه کارشناسی ارشد
در رشته علوم خاک- گرایش شیمی و حاصلخیزی خاک

عنوان:
برهمگنش آرسنات و آرسنیت با اجزای معدنی خاک

استاد راهنما:
دکتر اسماعیل گلی کلانپا

استاد مشاور:
دکتر محمدحسین داوودی

پژوهشگر:
لیلا شاطری علی‌آباد

پاییز 1393
چکیده: آرسنیک یکی از عنصر سمی و خطرناک برای سلامتی انسان و محیط زیست است. در طبیعت شیمی و حاصلخیزی خاک از آرسنیک به شکل آرسنات (AsO₄³⁻) و آرسنیت (AsO₃³⁻) پراپاره است. وجود خاک‌های آلهوده به‌یه دو آرسنیک‌های خطرناک در شمال غربی مشگیان شهر و در استان اردبیل گزارش شده است. در این مطالعه جذب سطحی و رهاسازی آرسنیک با اجزایی معدنی خاک بررسی شد. بدین منظور برازش آرسنات و آرسنیت با اجزایی معدنی خاک پرسید. بدین منظور دو شرایط مختلف جذب سطحی در حداکثر جذب سطحی مورد استفاده قرار گرفت. از مدل‌های لانگمویر، فرنهدلیچد لانگمویر با متونه و نیز مدل‌های خطی لانگمویر و فرنهدلیچد به‌منظور توصیف میزان آرسنیک بایقینانه در فاز محلول استفاده شد. نتایج نشان داد که جذب سطحی آرسنیک و آرسنیت با افزایش غلظت اولیه در فاز محلول افزایش یافت که در نتیجه به حداکثر جذب سطحی میرسد. جذب سطحی در جریان بیشتر از سیلت و شن بود. همچنین جذب سطحی آرسنیک در همه نمونه‌ها یکسان بود و در همه نمونه‌ها نسبت به آرسنیت شد. اما رهاسازی آرسنیک نسبت به آرسنیت بیشتر بود. در زمان‌های 45 و 93 ساعت تقیبی آرسنیت نسبت به آرسنیت بیشتر بود. مدل‌های داده‌های جذب سطحی نشان داد که مدل لانگمویر‌دو می‌باید به دلیل برترین بیان نتایج استاندارد بروآورد شده باشد. با استفاده از فرم معادلات لانگمویر و فرنهدلیچد و در زمان‌های 45 و 93 ساعت مقایسه مدل‌های داده‌های جذب سطحی با استفاده از فرم خطی معادلات لانگمویر و فرنهدلیچد نشان داد که روش حداکثر مربعات نسبت به دیگر روش‌ها به‌طور قابل توجهی بهتر است. کلید واژه‌ها: آرسنیک، هم‌داهنده جذب سطحی، معادله لانگمویر، معادله فرنهدلیچد، لانگمویر دومکانه، رهاسازی
<table>
<thead>
<tr>
<th>فصل اول: مقدمه</th>
<th>صفحه</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1 - مقدمه</td>
<td>2</td>
</tr>
<tr>
<td>1-2 - ضرورت و اهمیت پژوهش</td>
<td>5</td>
</tr>
<tr>
<td>1-3 - اهداف پژوهش</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>فصل دوم: مروری بر منابع</th>
<th>صفحه</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1 - معرفی آرسنیک</td>
<td>9</td>
</tr>
<tr>
<td>2-2 - 1 - قریه‌های جیرالی آرسنیک</td>
<td>11</td>
</tr>
<tr>
<td>2-3 - 2 - راه‌های ورود آرسنیک به خاک</td>
<td>12</td>
</tr>
<tr>
<td>2-4 - 1 - ارتباط آرسنیک و فسفر</td>
<td>13</td>
</tr>
<tr>
<td>2-4 - 2 - باره‌های آرسنیک در خاک</td>
<td>16</td>
</tr>
<tr>
<td>2-4 - 3 - باره‌های آرسنیک در خاک</td>
<td>18</td>
</tr>
<tr>
<td>2-4 - 4 - 1 - بافت خاک و اجزای معنی‌دار خاک</td>
<td>21</td>
</tr>
<tr>
<td>2-4 - 2 - 1 - اکسیدها و هیدروکسی‌های آهن، آلومینیوم و منکز</td>
<td>22</td>
</tr>
<tr>
<td>2-4 - 2 - 2 - رس‌ها</td>
<td>24</td>
</tr>
<tr>
<td>2-4 - 2 - 3 - انرژی سوفیئ</td>
<td>25</td>
</tr>
<tr>
<td>2-4 - 2 - 4 - رس قابل انتشار در آب</td>
<td>25</td>
</tr>
<tr>
<td>2-4 - 2 - 5 - رس قابل انتشار در آب</td>
<td>28</td>
</tr>
<tr>
<td>2-5 - 1 - معادلات همداشت جذب سطحی آرسنیک</td>
<td>28</td>
</tr>
<tr>
<td>2-5 - 2 - معادله فروندلیچ</td>
<td>29</td>
</tr>
</tbody>
</table>
فصل سوم: مواد و روش‌ها

Active Calcium Carbonate Equivalent (ACCE)

Bioavailable Organic Carbon (OC)

Total clay

WDC

Total clay

WDC
فصل چهارم: نتایج و بحث

1-1-9-3-1-9-1-3-1-8
معادله لاگنگر - فرودنیچ

46
49

4-1-9-3-1-9-1-3-1-8
- 197
- 197

49

فصل پنجم: نتیجه گیری کلی
نتیجه گیری و پیشنهادات ... 85
فهرست منابع و مآخذ .. 86

فهرست جدول ها

شماره و عنوان جدول

صفحه

جدول 4-1- خصوصیات شیمیایی خاکها و اجزای معدنی آنها.. 49
جدول 4-2- مقداری رس قابل انتشار در آب و رس کل و خصوصیات ساختمانی و فیزیکی نمونه های خاک .. 52
جدول 4-3- ضرایب فرم خطي معادلات فروندلیج اجزای معدنی خاکها (آرسنات).. 66
جدول 4-4- 4- ضرایب فرم خطي معادلات فروندلیج و فرومین تری اجزای معدنی خاکها (آرسنیت)........ 69
جدول 4-5- ضرایب و فرمول معادلات جذب سطحی .. 70
جدول 4-6- ضرایب معادلات چهارگانه در روش مدلسازی غیرخطی... 71
جدول 4-7- ضرایب همبستگی معادلات چهارگانه استفاده شده با اجزای معدنی خاکها................. 75

فهرست شکل ها

شماره و عنوان شکل

صفحه

شکل 2-1- انواع همدماهای جذب ... 27
شکل 3-2- نمونه‌ای از فایل Spreradsheet برای محاسبه پارامترهای مدل 45
شکل 4-1- همدماهای جذب سطحی آرسنت در اجزای معدنی خاکها مورد مطالعه 54
شکل 4-2- همبستگی جذب سطحی آرسنیت در اجزای معدنی نمونه های خاک
شکل 4-3- مقایسه همبستگی جذب سطحی آرسنیت و آرسنیت
شکل 4-4- فرم خطی معادله لانگموور برای اجزای معدنی خاکها
شکل 4-5- توانایی فرم خطی معادله لانگموور در پیش بینی حداکثر جذب سطحی در رس شماره 11
شکل 4-6- فرم خطی معادله فروندلیج برای اجزای معدنی خاکها
شکل 4-7- توانایی معادله فروندلیج در پیش بینی حداکثر جذب سطحی در رس شماره 10
شکل 4-8- فرم خطی معادله لانگموور همبستگی جذب سطحی آرسنیت
شکل 4-9- توانایی معادله لانگموور در پیش بینی حداکثر جذب سطحی رس شماره 10
شکل 4-10- فرم خطی معادله فروندلیج همبستگی جذب سطحی آرسنیت
شکل 4-11- توانایی معادله فروندلیج در پیش بینی حداکثر جذب رس شماره 10
شکل 4-12- مدل‌های نسبتی همبستگی جذب سطحی آرسنیت با مدل لانگموور جایگاه و
شکل 4-13- مدل‌های مدل‌سازی غیرخطی همبستگی جذب سطحی آرسنیت با مدل لانگموور دو مکانه
شکل 4-14- مدل‌های همبستگی جذب سطحی آرسنیت رس شماره 7 توسط مدل‌های خطی و حداکل مربعات معادلات لانگموور و
شکل 4-15- مدل‌های همبستگی جذب سطحی آرسنیت رس شماره 7 توسط مدل‌های خطی و حداکل مربعات معادلات لانگموور و
شکل 4-16- رهاسازی میزان آرسنیت جذب سطحی شده از اجزای معدنی خاک شماره 4 در زمانهای مختلف
شکل 4-17- رهاسازی میزان آرسنیت جذب سطحی شده از اجزای معدنی خاک شماره 10 در زمانهای مختلف
شکل 4-18- رهاسازی فسفر بومی خاک در فرکشن شن شماره 2
فصل اول:
مقدمة
آرسنیک (As) عنصری شیمیایی با شکل اوربیتالی $4s^2 4p^3$ است و در زیر گروه یک منجم جدول تناوبی قرار دارد (والش و همکاران، 1977). این عنصر با عدد اتمی 75 و جرم اتمی 74.96 گرم در هاله فلز معروفی است که به رنگ بیولیزد، سیاه و خاکستری یافته می‌شود (چی کی سین، 1989). آرسنیک به شکل‌های آلمی، معدنی و گازی در سیستم‌های طبیعی یافته می‌شود. شکل معدنی در مقایسه با شکل آلمی بسیار سمی است. شکل‌های معدنی آن شامل آرسنیک (V) و آرسنیک (III) می‌باشد که در اکوسیستم‌های طبیعی نظر خاک، آب و رسوبات یافت می‌شود. آرسنیک، فرم غالب آرسنیک در خاک است اما میزان تحرک و سمیت آن نسبت به آرسنیک کمتر است. (پرائنا و پسانیا، 2002 و وامیلا، 2012). معمولاً در خاکهای بازه‌گرخ خوب، آرسنیک (V) غالب است. اما تحت شرایط غرفه‌ای آرسنیک (III) غالب می‌باشد و دارای سمیت و تحرک بیشتری است. هردو فرم آرسنیک از طریق مکانیسم‌های لیگاندی به سطوح باردار اکسیده‌های آهن و آلومینیوم، در مفاضل مختلف pH می‌شود (هرکی و همکاران، 2003). در آب‌های زیرزمینی رایج تر است. این مسائل نگران کننده است زیرا آرسنیک، سمی تر از (V) است (نیتلز و همکاران، 1982) غلظت‌های بالای آرسنیک به فرم (V) از هاپیلا دیده سی و همکاران، 1982 طریق رها سازی از سطوح کاتیون‌های اکسیده‌ای و رسها در pH 4 تا 10 طریق مولکولی و مکانیسم‌های دیگری را به صورت ترکیبی به توانسته آزادشدن آرسنیک و فسفر از ذرات دیسپرس شده به مزارع برخوردار هستند، در حالی که ذرات دیسپرس شونده مهم‌ترین فاکتور در آلودگی خاک، مزارع و آب‌های زیرزمینی محصول می‌شوند.

آرسنیک به طور طبیعی سرطان زا بوده و به عنوان یک مشکل بزرگ برای سلامتی انسان و محیط زیست تلقی می‌شود. این عنصر پویا است و در خاک، آب و رسوبات یافته می‌شود (یلگرینی، 2010). آلودگی آرسنیک در خاک و آب‌های زیرزمینی کیفیت آب و خاک را بهم زده و ممکن است به راحتی زندگی گیاهان و موجودات آبزی را تحت تاثیر قرار دهد. غلظت بالایی 1 میکروگرم در گرم باعث آسیب به محصولات می‌شود (بانک، 1994). سازمان بهداشت جهانی حداکثر مجاز آرسنیک در آب آشامیدنی را 0.1 میکروگرم در لیتر تعیین کرده است که در
غلظت های بیش از این می‌تواند باعث بروز سرطان و مشکلات تنفسی برای انسان بشود. سمیت آرسنیک به غلظت‌های بیش از یک ده‌میلی‌گرم بر لیتر افزایش می‌یابد. نشانگر این آسیب‌های مصرف آرسنیک به علت وابستگی درون‌کرده است.

منابع طبیعی و فعالیت‌های انسانی دو منشاء عمده ورود آرسنیک به سیستم‌های طبیعی می‌باشد. در صورت ورود آرسنیک به خاک و آب به صورت طبیعی، این سیستم به‌طور طبیعی، به نوع مواد مادیری وابسته پیوسته و در سنگ‌های رسوبی آسیب یافته است. این فرایند به طور ثابت و تجزیه و تخریب این کانی‌ها باعث ورود آرسنیک به سیستم‌های زیست می‌شود.

فعالیت‌های انسانی نظیر اسکیس از آرسنیک در صنعت (AsH₃) و کشاورزی (حشره‌کش، علف‌کش، کودهای شیمیایی) و از سوی دیگر، استفاده از افزایش غلظت آرسنیک در سیستم‌های طبیعی می‌شود (ولیکوپال و آکیو، 2008). در این زمینه، کلیوپیدهای خاک نقش بسیار مهمی بازی می‌کنند.

توزیع آرسنیک در سیستم‌های طبیعی نظیر خاک، آب‌های زیرزمینی و سطحی به صورت طبیعی و غیر طبیعی انجام می‌گیرد. در صورت ورود آرسنیک به حیطه زیست، می‌تواند نقش مهمی در رفته‌ار کند.

تحرک، بویایی و زیست‌فراهم آرسنیک در سیستم‌های طبیعی نظیر خاک، آب‌های زیرزمینی و سطحی تابع عوامل مختلفی از جمله انحلال و رسوب کاتیون‌های حاوی آرسنیک، جذب سطحی و رهاسازی توسط سطوح کلیوپیدهای محیط و شرایط اکسیداسیون و احیای می‌باشد. از بین این فرآیندها، جذب سطحی و رهاسازی آرسنیک توسط سطوح کلیوپیدهای خاک اساسا حرق قریب به نتیجه سیستم آن را در خاک و سفره‌های آب زیرزمینی کنترل می‌کند (پالسکوکال و آکیو، 2008). در این زمینه، کلیوپیدهای خاک نقش بسیار مهمی بازی می‌کنند.

جذب سطحی یکی از رایج ترین واکنش‌هایی است که برای فعال و انفعال آرسنیک با خاک گزارش شده است (گیلز و همکاران، 2011). کلیوپیدهای معدنی خاک نظیر رس، اسیدهای آهن و آلومینیوم بدیل سطح و بی‌بی‌سی از رایج‌ترین پاسخ‌های طبیعی در طبیعت بازی می‌کند (پالسکوکال و همکاران، 2001 و...
مطالعات مختلف نشان داده است که کلوپیدهای معدنی قابل انتشار در آب به ویژه ذرات رس و سیلت توسط فرآیند فرسایش منقل شده و در نتیجه منجر به هدرفت عناصر غذایی و آلایندها از مزرعه و رسوب آن در منطقه دیگر می‌شود(ایگوی و آگکانیا، 2008؛ کالرو و همکاران، 2008). آزمایش‌هایی که در کشور فرانسه انجام شدند نشان داده که مناسب آب و ایجاد پدیده بیوتريفیکاسیون(غشته سازی) در کنار می‌کند. اینکه از فاکتورهای مهم در این زمینه رس قابل انتشار در آب است. رس قابل انتشار در آب بخشی از ذرات جامد معلق می‌باشد که توسط آب و رواناب تا فواصل دیگر قابل حمل و جابجایی است. بنابراین، رس قابل انتشار در آب هم یک شاخه خوب از خطر فرسایش خاک بوسیله آب و به تبع آن، کاهش و هدر روي موادغذایی گياه و آلایندها در جریانهای زمینی است. علاوه بر این، غلظت فسفات یک فاکتور اصلی است که بر روی جذب آرسنیک در خاک اثرمندی دارد.
زیرافسیفهای برای جذب درسایتهای جذبی با ارسنت رقابت می‌کنند. نتایج تحقیقات نشان می‌دهد که فرآیندهای فرسایش در نتیجه آزادسازی ذراتی مقداری رس قابل انتشار در آب در روانه‌انگار به خروج حتمی فسفر و سایر عناصر آلانده مانند ارسنیک از خاک‌ها آهنکی می‌گردد (کالارو و همکاران، 2007). نسبت انتشار فسفر و ارسنیک، به غلطت مواد محلی وابسته است. انتشار ذرات بر علیه مهد در انتقال ارسنیک و فسفر از خاک به سطوح آبها است (ماراتین و همکاران، 2003).

خاک‌های با مقادیر زیاد رس قابل انتشار، به آسانی و خیلی بیشتر از خاک‌هایی با مقادیر کمتر رس قابل انتشار در آب، فرسوده می‌شوند. رس قابل انتشار به آن برای خاک بکر مخلوط زیست، مشکلات بزرگی ایجاد می‌کند.

ایجاد می‌کند. تاثیر منفی مقدار زیاد رس قابل انتشار در آب بر روی فرسایش خاک توسط آب بخوبی شناخته شده است. و باعث افزایش انتشار و رسوب‌گیری رس با عنصر غذایی حمل شده با جریان زمینی می‌شود. این رسوبات به‌هم پیوسته رسی، باعث به خطر افتادن سلامتی محیط زیست و زمین‌های کشاورزی می‌شود (ایگوی، 2010).

نتایج مطالعات متعدد نشان می‌دهد که کانل‌های رسی و سایر ترکیبات رسی مورترین عامل در تحرک و زیست فراهمی ارسنیک در خاک هستند (کاپ و همکاران، 2002 و هاسایین و همکاران، 2002). در برخی موارد نقش سیلت نیز در جذب سطحی ارسنیک برجسته می‌شود (وانگ و کلر، 2009). امروزه با توجه به بدلایل متعدد فرسایش‌پذیری خاک‌ها در حال افزایش است و خاک‌ها در معرض فرسایش قرار دارند. یکی از پارامترهای

پژوهش: آرسنیک یکی از سم‌ترین و مضرترین عنصر شناخته شده در طبیعت است (چین و همکاران، 2012). عمداً به دو فرم آرسنت و آرسنیت در طبیعت یافت می‌شود. غلظت متوسط آن به طور معمول 40–400 (بپونی) و در برخی منابع 0–200 (والش و همکاران، 1979) و 0–400 (والش و همکاران، 1977) میلی‌گرم در کیلوگرم خاک گزارش شده است. این عنصر به طور وسیعی در پوسته زمین توزیع شده است (ودبیلس، 1991).

نتایج مطالعات متعدد نشان می‌دهد که کانل‌های رسی و سایر ترکیبات رسی مورترین عامل در تحرک و زیست فراهمی ارسنیک در خاک هستند (کاپ و همکاران، 2002 و هاسایین و همکاران، 2002). در برخی موارد نقش سیلت نیز در جذب سطحی ارسنیک برجسته می‌شود (وانگ و کلر، 2009). امروزه با توجه به بدلایل متعدد فرسایش‌پذیری خاک‌ها در حال افزایش است و خاک‌ها در معرض فرسایش قرار دارند. یکی از پارامترهای
بسیار مهم در بحث فرسایش خاک، میزان ذرات قابل انتشار در آب است که پتانسیل انتقال و چابجاگی بیشتری نیز دارند. از طرفی با توجه به برهمکنش قوی آرسنیک با ذرات رس و سیلت قابل انتشار در آب، در اثر چابجاگی این ذرات معلق آرسنیک متصل به این کلوپیدهای ریز نیز منتقل شده و به همراه آنها در مکان‌های رسوب بیدا کرده و یا ممکن است وارد آب‌های سطحی و زیرزمینی بشود.

یافته‌های مختلف نشان می‌دهد که خاک‌ها مقدار قابل توجهی آرسنیک و فسفر را به صورت محلول یا متعلق به کلوپیدهای به ویژه در اثر فرآیند فرسایش از دست می‌دهند (مارتین و همکاران، 1404، کالرا و همکاران، 1388، ایگوی، 1398، 1399). بنابراین، در محیط‌هایی که در آن ذرات رس قابل انتشار یک فرآیند مهم در انتقال آرسنیک و فسفور از خاک به سطوح آب‌ها بوده و نقش بسیار مهمی در بسیاری از دست می‌دهند (مارتین و همکاران، 1398) بررسی اهمیت موضوع و یا عنايت به گزارش‌ها وجود سایتهای آلوده به آرسنیک در منطقه شمالغرب مشگین شهر اطلاعاتی در زمینه برهمکنش آرسنیک و آرسنات (دو گونه غالب آرسنیک در طبیعت) با اجزاء کلوپیدی خاک نظیر رس قابل انتشار در آب و سیلت و شن خیلی ریز، زیاد در دسترس نیست. همچنین، پتانسیل انتقال آرسنیک متصل به ذرات رس و سیلت قابل انتشار در آب مورد بررسی قرار نگرفته است. بنابراین، این پژوهش در نظر دارد میزان آرسنیک کل در این اجزاء و نقش هر کدام را در چسب سطحی آرسنات و آرسنیت بررسی نماید.

اهداف پژوهش

با توجه به مطالعات فوق، اهداف این پژوهش عبارتند از:

1. تعیین میزان رس قابل انتشار در خاک‌های منطقه مورد مطالعه.

2. مطالعه چسب سطحی آرسنیت و آرسنات در رس قابل انتشار در آب و سیلت.

3. بررسی توانایی معادلات مختلف چسب سطحی در توصیف داده‌های چسب سطحی آرسنیک
فصل دوم:
مروری بر منابع
آرسنیک (As) عنصری شیمیایی با شکل اوربیتالی $4s^2 4p^3$ است و در زیر گروه پنج هم جدول تناوبی قرار دارد. والش و همکاران (1977)، آرسنیک با عدد اتمی 33 و جرم اتمی 62.16/74 شبه فلز مصرفی است که به رنگ‌های زرد، سیاه و خاکستری یافت می‌شود (جی‌کی سین، 1989). آرسنیک با خاطر الکترونگاتیویته‌که، جزو فلزات نیست و به عنوان یک متابولیت (شبه فلز) در نظر گرفته می‌شود (والش و همکاران، 1977). جرم اتمی آن 160/2/1.3 آنژستروم می‌باشد. آرسنیک دارای جلای فلزی است که سطح آن، در هواهای مرطوب اکسیدشده و بیلورهای سه گوش تشکیل می‌دهد که بسیار شکننده‌اند (جهان بخش شجاعی و همکاران، 1386).

اگرچه این شیب فلز، سمی است اما در غلظت‌های کم، مشکلی ایجاد نمی‌کند. گزارش شده است که غلظت آرسنیک در خاک‌های غیر آلوده مابین 2/0 تا 2/4 میلی‌گرم بر کیلوگرم است (سازمان بهداشت جهانی، 1981). علاوه بر این، سازمان بهداشت جهانی حد مجاز آرسنیک در آب آشامیدنی را 10 میکرو‌گرم در لیتر تعیین کرده است که در غلظت‌های باعث می‌شود که در این می‌تواند باعث بروز سرطان و مشکلات تنفسی برای انسان بشود (هانگ، 1994). سطوح گزارش شده برای آرسنیک در سراسر دنیا در خاک‌ها به طور متوسط 170/200/40 تا حدودا 5 میکرو‌گرم بر گرم است (گادیبال و همکاران، 1380).

آلودگی آرسنیک در خاک ممکن است بر اثر دسته‌پوستی زندگی گیاهان را تحت تاثیر قرار دهد. غلظت بالای آلی‌گرم‌بر کیلوگرم باید آسیب به محصولات می‌شود (هانگ، 1994). آرسنیک به شکل‌های آلی معدنی و گازی در سیستم‌های طبیعی یافت می‌شود. شکل معدنی در مقایسه با شکل آلی بسیار سمی است (ویولات و پیگنا، 2002، وامیلا، 2012). شکل‌های غیر آلی آن شامل آرسنات و آرسنیت است (جهان بخش شجاعی و همکاران). فاکتورهای زیادی غلظت آرسنیک را در آب زیرزمینی کنترل می‌کند. مانند: پتانسیل رذاکس، جذب و رهاسازی، انحلال و رسوب، گونه آرسنیک، pH، حضور و غلظت.
اکسیدها و هیدروکسیدهای آهن، آلومینیوم و منگنز را دارد. هر گاه pH خود را از دست داده و آرسنیک جذب شده را دوباره آزاد می‌کند (ورلسبورن و همکاران، 2008). مانندیک و گلدبرگ (1996) تمایل آنیونها را برای جذب روزی اکسیدهای فلزی در pH خنثی به این صورت نشان دادند:

\[
P_{4} > SeO_{3} > AsO_{4} > AsO_{3} > SiO_{4} > SO_{2} > F > B(OH)_{3}\]

حضور بیشتر از یکی از این آنیونها در خروج آرسنیک نقش بسزایی خواهد داشت. از بین این سیلیکات و فسفات، در خروج آرسنیک نقش بسزایی دارند. اما حضور هم‌زمان هردوی این آنیونها، خروج آرسنات را تا 39% و خروج آرسنیک را تا 96% کاهش می‌دهد (منگ، 2000).

علاوه براین غلظت فسفات نیز یک فاکتور اصلی است که بر روی جذب آرسنیک در خاک اثرمند خواهد داشت.

فسفات برای جذب درسایه‌های جذبی با آرسنات رقابت می‌کند (ورلسبورن و همکاران، 2002). آرسنیک دارای انواع مختلفی می‌باشد ازجمله: محلول و تبادلی، پیوند با کربناته، پیوند با آسیدهای آهن و منگنز، و پیوند یافته با ماده آلی. که به مجموع گونه‌های تبادلی و پیوندی با کربناته آرسنیک یا زیست فراهم، گویند که معمولاً دارای تحرک نسبی در طبیعت هستند و برای گیاهان در bioavailable دسترسی می‌باشند و به این ترتیب برای گیاهان ایجاد سمیت می‌کند (جنا و همکاران، 2012).

آرسنیک در سالهای اخیر به دلیل ویژگی‌های سمی بودن و سرطان‌زا بودن مورد توجه زیادی قرار گرفته است (بندار و همکاران). از این رو در مطالعه حاضر، خاک‌های منطقه‌ای در شمال‌غرب مشگین‌شهر که اخیراً آلوده به آرسنیک گزارش شده است، مورد مطالعه قرار گرفت.

۲-۱ فرم‌های غیر آلی آرسنیک

فرم‌های سمی، قابلیت تجمع زیستی و قابلیت تجزیه زیستی فقط به غلظت کل آرسنیک بستگی ندارد، بلکه به فرم شیمیایی آن نیز وابسته است. آرسنیک به شکل‌های آلی، غیر آلی و گازی وجود دارد. شکل غیر آلی در مقایسه با شکل آلی بسیار سمی است. شکل‌های غیر آلی آن شامل آرسنات و آرسنیت است (جانگ چی ان و همکاران، 2012). که در اکوسیستم‌های طبیعی نظیر خاک، آب و رسوبات یافت می‌شود. آرسنات، فرم غالب
آرسنیک در خاک است اما میزان تحرک و سمیت آن نسبت به آرسنایت کمتر است. ویولانت و پیگنا، ۲۰۰۲ و امیلا، ۲۰۱۲.

در شرایط احیای آرسنیت سمی تر (ربو، ۱۹۶۶)، پرتو (۱۹۷۴) و محلولت و متغیرتر است از حالات اکسیدید (دبیل و اسپونوبادا، ۱۹۷۶). تحرک، سمیت و زیست فراهمی آرسنیک در خاکها به شرایط اکسیداسیون آن، وابسته است. معمولا در خاک‌های بازه‌کش خوب، آرسنات (۵) غالب است. تحت شرایط غرق‌نشین، شکل آرسنایت (۳) غالب می‌باشد و دارای سمیت و تحرک بیشتری است. هردو فرم آرسنیک (آرسنات و آرسنیت) از طریق مکانیسم‌های ليگندی به سطوح بداردار اکسیده‌های آهن و آلومینیوم، در مقادیر مختلف متصل می‌شوند (هروق و همکاران، ۲۰۰۸).

گونه‌های آلی آرسنیک مضار می‌کنند و بیشتر بدن داردند و شکل‌های غیر آلی در برابر گونه‌های آلی سمی ترند. گونه‌های غیر آلی آرسنات و آرسنیت هستند که آرسنیت ۵ برابر سمی تر از آرسنات ۵ طرفینی است (تاماکی و همکاران، ۱۹۹۲).

سمیت آرسنیک به غلظت گونه‌های آلی در آریک توسط گونه‌های آلی ترکیب (آرسنات، ۱۹۹۸) است. آرسنیک عبارت است از از As(X) R As- > As (III) > AsH۳ (فلور، ۱۹۷۴) که به سلسله بهداشت و سلامت جهانی آژانس حفاظت از محیط زیست آمریکا، چندان‌مقدار آرسنیک در آب آشامیدنی را ۱۰-۱۰۰ µg L⁻¹ دانسته اند (ای پی ای، ۲۰۰۲).

۲- راههای ورود آرسنیک به خاک

آرسنیک پویا است و در خاک، آب و رسوبات یافت می‌شود (بیلگرینی، ۲۰۰۱). منبع اصلی آرسنیک، تخریب و هوا دیدگی مواد مادره می‌باشد (بیانچو، ۱۹۹۹). توزیع آرسنیک در خاک، بسته به نوع خاک و
Abstract: Arsenic, an toxic and hazardous element, is found mainly as arsenate and arsenite in natural systems. There are some evidences addressing as polluted land in soils of Northwestern Meshgin Shahr. In this study examined adsorption(0, 1, 2/5, 10, 15) and desorption(2/5, 10, 15ppm) of arsenate and arsenite with soil mineral particles. The desorption tests done in three time: 1, hours, 50hours and 39hours. Adsorption models(Langmuir, freundlich, langmuire-freundlich and two surface Langmuir) were applied to describe adsorption data. Results showed that As(V and III) adsorption on soil mineral particles increased by increasing initial concentrations. The rate of adsorption decreased at high initial As concentrations. Also rate of adsorption in clay particles is higher than silt and sand particles. And adsorption of arsenite is more than arsenate in all of samples. But desorption of arsenate is more than arsenite, as in last times(45 and 93hr) arsenite not realesed. Modeling adsorption data showed that two surface Langmuir model can describe adsorption data well based on higher R^2 and lower SSE values.

Modelling also showed that least squared option described adsorption data well in comparision to linear form of Langmuir and freundlich models.

Keywords: Arsenic, adsorption isotherms, Langmuir equation, desorption
University of Mohaghegh Ardabili

Faculty of Agricultural Science and Natural Resources

Department of Soil Science

Thesis submitted in partial fulfilment of the requirements for the

degree of M. Sc. in Soil Science

Title:

Arsenate and Arsenite reactions with soil mineral particles

Supervisor:

Esmail Goli Kalanpa (Ph. D)

Advisor:

Mohammad Hossein Davoudi (Ph. D) / (M.A)

By:

Leila Shateri Aliabad