دانشکده علوم
گروه شیمی کاربردی
پایان‌نامه برای دریافت درجه کارشناسی ارشد
در رشته شیمی فیزیک

عنوان:
بررسی ساختار الکترونی و خواص لیگاند شیف باز \(\text{N}_4 \) و کمپلکس‌های آن با بعضی عناصر
واسته با استفاده از نظریه عامل دانسیتیه

استاد راهنما:
دکتر امیر ناصر شمخالی
دکتر مریان عابدی

استاد مشاور:
دکتر ابوالفضل بشاوات پور

توضیحات:
فاتحه رستمی
زمستان 1393
عنوان پایان‌نامه: بررسی ساختار الکترونی و خواص لیگاند شیف باز N_4S_2 و کمپلکس‌های آن با بعضی عنصرها واسطه با استفاده از نظریه عامل دانسیته

استاد راهنما: دکتر امیر ناصر شمخالی، دکتر مرجان عابدی
استاد مشاور: دکتر ابوالفضل بضاعت پور

مقطع تحصیلی: کارشناسی ارشد
گرایش: شیمی فیزیک
دانشگاه: دانشگاه علوم-گروه شیمی کاربردی
تاریخ دفاع: 93/11/31
تعداد صفحه: 311

چکیده:
در این کار لیگاند شیف باز N_4S_2 و شش دندانه ای $\text{N}_6\text{S}_2\text{۶-تیوفنوکسی-پیریدین-6-اتان}$ کربوکسالدیم L از تراکم پیریدین با شیمی فیزیک سنتز شده و کمپلکس‌های پرکلرات با لیگاند منجر به تشکیل کمپلکس‌های $\text{ML(ClO}_4)_2$ (M=Ni, Cu, Co, Zn) شد. لیگاند سنتز شده و کمپلکس‌های آن توسط تکنیک‌های UV، IR، آنالیز آنالیز و شناسایی مورد بررسی و شناسایی قرار گرفتند و فقط ساختار بلوری کمپلکس $\text{NiL(ClO}_4)_2\cdot \text{H}_2\text{O}$ با استفاده از کریستال لورگرافی تعیین شد. به منظور بررسی ساختار الکترونی این کمپلکس‌ها روی محاسباتی DFT با عامل دانسیته B3LYP و سری پایه TZVP مورد استفاده قرار گرفت. بر اساس این مطالعات محیط کتوردنسابوس مس چهار وجهی و محیط کتوردنسابوس نیکل، کبالت و روی هشته و چهار اخرین پلاستیکی برای کمپلکس‌ها از روی اختلاف انرژی بین تراز LOMO و HOMO با داده‌های طیف UV-Vis محلول کمپلکس‌ها مطابقت دارد.

کلید واژه‌ها: DFT، شیف‌باز شش دندانه‌ای، ساختار الکترونی، پیریدین-2-کربوکسالدهید، ساختار کریستالی
فهرست مطالب

فصل اول: مقدمه ای بر مطالعه تنوری کمیلکس های شیف باز

- مقدمه .. 2
- 1-1- تاریخچه شیف بازها ... 2
- 2-1- روش تهیه لیگاند های شیف باز ... 4
- 3-1- طبقه بنیاد لیگاند های شیف باز ... 4
- 4-1- اهمیت و کاربرد های مهم کمیلکس های شیف باز شده با لیگاند های شیف باز .. 5

1-4-1- خواص مغنیطیسی کمیلکس های شیف باز .. 5

2-3-1- خواص کاتالیزگری کمیلکس های شیف باز ... 6

3-4-1- خواص دارویی کمیلکس های شیف باز ... 7

4-3-1- خواص فتووپلاستیکی کمیلکس های شیف باز .. 8

5-4-1- خواص توری غیر خطی .. 8

6-4-1- فعالیت آنزیمی ... 8

5-1- مطالعات تنوری کمیلکس های شیف باز.. 8

فصل دوم: شیمی محاسباتی

- 2-1- شیمی محاسباتی ... 2
- 2-2- تقریب هارتی - گوک .. 2
- 2-3- دیروینان اسلاینت ... 3
- 2-4- اصل تغییر ... 3
- 2-5- نظریه عامل دانسینه ... 5
- 2-6- دانسینه الکترون .. 1-5- 2- دانسینه الکترون.. 5
- 2-7- قلیبه هوو- هونبرگ ... 5
- 2-8- مادل کوهن - شام .. 2-3- مادل کوهن - شام .. 5
- 2-9- LSDDA و دانسینه محاسباتی اسپینی ... 2
- 2-10- تقریب گرادراینس تعمیم یافته GGA .. 2
- 2-11- تقریب گرادراینس تعمیم یافته (meta GGA) 8
- 2-12- روش های گرادراینس مرتبط با الکترایا (meta GGA) 8
- 2-13- عامل های میادل های - هیردی .. 9
- 2-14- سری های پایه ... 10
فصل سوم: روش کار

Error! Bookmark not defined. .. ۱-۳
Error! Bookmark not defined. ۱-۳
Error! Bookmark not defined. ۲-۳
Error! Bookmark not defined. ۳-۳
Error! Bookmark not defined. ۴-۳
Error!Bookmark not defined.
بررسی مشخصات ساختاری کمپلکس‌ها: طول پیوند، مرتبه پیوند و زاویه پیوند ...
ML(ClO$_4$)$_2$ (M=Cu,Co,Ni,Zn) کمپلکس‌های سنتز شده
ML (ClO$_4$)$_2$ (M= Co,Ni, Cu,Zn) کمپلکس‌های سنتز شده
ML(ClO$_4$)$_2$ (M=Cu,Co,Ni,Zn) کمپلکس‌های سنتز شده
ML(ClO$_4$)$_2$ (M=Cu,Co,Ni,Zn) کمپلکس‌های سنتز شده
کمپلکس‌های سنتز شده
ML(ClO$_4$)$_2$ (M=Cu,Co,Ni,Zn) کمپلکس‌های سنتز شده
فهرست تصاویر

۱-شماره و عنوان تصاویر

۴-شکل (۱-۱): واکنش تهیه لیگاندهای شیف باز
۴-شکل (۱-۲): انواع لیگاندهای شیف باز چندنامه

Error! Bookmark not defined.

۱-شکل (۷-۱): ساختار کربوکسالده کمپلکس (II)
Error! Bookmark not defined.

۱-شکل (۷-۲): ساختار کربوکسالده کمپلکس (III)
Error! Bookmark not defined.

۱-شکل (۷-۳): ساختار کربوکسالده کمپلکس (IV)
Error! Bookmark not defined.

۱-شکل (۷-۴): ساختار کربوکسالده کمپلکس (V)
Error! Bookmark not defined.

۱-شکل (۷-۵): ساختار کربوکسالده کمپلکس (V۱)
Error! Bookmark not defined.

۱-شکل (۷-۶): ساختار کربوکسالده کمپلکس (V۲)
Error! Bookmark not defined.

۱-شکل (۷-۷): ساختار کربوکسالده کمپلکس (V۳)
Error! Bookmark not defined.

۱-شکل (۷-۸): ساختار کربوکسالده کمپلکس (V۴)
Error! Bookmark not defined.

۱-شکل (۷-۹): ساختار کربوکسالده کمپلکس (V۵)
Error! Bookmark not defined.

۱-شکل (۷-۱۰): ساختار کربوکسالده کمپلکس (V۶)
Error! Bookmark not defined.

۱-شکل (۷-۱۱): ساختار کربوکسالده کمپلکس (V۷)
Error! Bookmark not defined.

۱-شکل (۷-۱۲): ساختار کربوکسالده کمپلکس (V۸)
Error! Bookmark not defined.

۱-شکل (۷-۱۳): ساختار کربوکسالده کمپلکس (V۹)
Error! Bookmark not defined.

۱-شکل (۷-۱۴): ساختار کربوکسالده کمپلکس (V۱۰)
Error! Bookmark not defined.

۱-شکل (۷-۱۵): ساختار کربوکسالده کمپلکس (V۱۱)
Error! Bookmark not defined.

۱-شکل (۷-۱۶): ساختار کربوکسالده کمپلکس (V۱۲)
Error! Bookmark not defined.

۱-شکل (۷-۱۷): ساختار کربوکسالده کمپلکس (V۱۳)
Error! Bookmark not defined.

۱-شکل (۷-۱۸): ساختار کربوکسالده کمپلکس (V۱۴)
Error! Bookmark not defined.

۱-شکل (۷-۱۹): ساختار کربوکسالده کمپلکس (V۱۵)
Error! Bookmark not defined.

۱-شکل (۷-۲۰): ساختار کربوکسالده کمپلکس (V۱۶)
Error! Bookmark not defined.

۱-شکل (۷-۲۱): ساختار کربوکسالده کمپلکس (V۱۷)
Error! Bookmark not defined.

۱-شکل (۷-۲۲): ساختار کربوکسالده کمپلکس (V۱۸)
Error! Bookmark not defined.

۱-شکل (۷-۲۳): ساختار کربوکسالده کمپلکس (V۱۹)
Error! Bookmark not defined.

۱-شکل (۷-۲۴): ساختار کربوکسالده کمپلکس (V۲۰)
Error! Bookmark not defined.

۱-شکل (۷-۲۵): ساختار کربوکسالده کمپلکس (V۲۱)
Error! Bookmark not defined.

۱-شکل (۷-۲۶): ساختار کربوکسالده کمپلکس (V۲۲)
Error! Bookmark not defined.

۱-شکل (۷-۲۷): ساختار کربوکسالده کمپلکس (V۲۳)
Error! Bookmark not defined.

۱-شکل (۷-۲۸): ساختار کربوکسالده کمپلکس (V۲۴)
Error! Bookmark not defined.

۱-شکل (۷-۲۹): ساختار کربوکسالده کمپلکس (V۲۵)
Error! Bookmark not defined.

۱-شکل (۷-۳۰): ساختار کربوکسالده کمپلکس (V۲۶)
Error! Bookmark not defined.

۱-شکل (۷-۳۱): ساختار کربوکسالده کمپلکس (V۲۷)
Error! Bookmark not defined.

۱-شکل (۷-۳۲): ساختار کربوکسالده کمپلکس (V۲۸)
Error! Bookmark not defined.

۱-شکل (۷-۳۳): ساختار کربوکسالده کمپلکس (V۲۹)
Error! Bookmark not defined.

۱-شکل (۷-۳۴): ساختار کربوکسالده کمپلکس (V۳۰)
Error! Bookmark not defined.

۱-شکل (۷-۳۵): ساختار کربوکسالده کمپلکس (V۳۱)
Error! Bookmark not defined.

۱-شکل (۷-۳۶): ساختار کربوکسالده کمپلکس (V۳۲)
Error! Bookmark not defined.

۱-شکل (۷-۳۷): ساختار کربوکسالده کمپلکس (V۳۳)
Error! Bookmark not defined.

۱-شکل (۷-۳۸): ساختار کربوکسالده کمپلکس (V۳۴)
Error! Bookmark not defined.

۱-شکل (۷-۳۹): ساختار کربوکسالده کمپلکس (V۳۵)
Error! Bookmark not defined.

۱-شکل (۷-۴۰): ساختار کربوکسالده کمپلکس (V۳۶)
Error! Bookmark not defined.

۱-شکل (۷-۴۱): ساختار کربوکسالده کمپلکس (V۳۷)
Error! Bookmark not defined.

۱-شکل (۷-۴۲): ساختار کربوکسالده کمپلکس (V۳۸)
Error! Bookmark not defined.

۱-شکل (۷-۴۳): ساختار کربوکسالده کمپلکس (V۳۹)
Error! Bookmark not defined.
شکل (۳-۲)؛ خاکستری‌شدن شده کمپلکس {(الف) تصویر از روبو-ب} از پیه‌لو

شکل (۳-۳)؛ ساختار بهینه شده کمپلکس {(الف) تصویر از روبو-ب} از پیه‌لو

شکل (۳-۴)؛ ساختار بهینه شده کمپلکس {(الف) تصویر از روبو-ب} از پیه‌لو

شکل (۳-۵)؛ ساختار بهینه شده کمپلکس {(الف) تصویر از روبو-ب} از پیه‌لو
جدول 1-6: طول بینود و زوایای پیوند کمپلکس

جدول 1-7: طول بینود و زوایای پیوند کمپلکس

جدول 1-8: طول بینود و زوایای پیوند کمپلکس

جدول 1-9: طول بینود و زوایای پیوند کمپلکس

جدول 1-10: طول بینود و زوایای پیوند کمپلکس

جدول 1-11: طول بینود و زوایای پیوند کمپلکس
جدول (4-3): تابع محاسباتی طول پیوندها (\(A^0\)) و وزنی پیوندها (\(\text{A}^0\)) در کمپلکس

Bookmark not defined.

جدول (4-5): تابع محاسباتی طول پیوندها (\(A^0\)) و وزنی پیوندها (\(\text{A}^0\)) در کمپلکس

Bookmark not defined.

جدول (4-6): بار مولکول بعضی از اتم های لیگاند

Bookmark not defined.

جدول (4-7): بار مولکول بعضی از اتم های کمپلکس

Bookmark not defined.

جدول (4-8): بار مولکول بعضی از اتم های کمپلکس

Bookmark not defined.

جدول (4-9): دانشیه اسپانی اتحاد بعضی از اتم های کمپلکس

Bookmark not defined.

جدول (4-10): دانشیه اسپانی اتحاد بعضی از اتم های کمپلکس

Bookmark not defined.

جدول (4-11): سطح انرژی HOMO و LOMO و تعیین عمده ترین سهم اوربانیالی در هر تراز کمپلکس

Bookmark not defined.

جدول (4-12): فرکانس ارتعاش برخی پیوندها با روش محاسباتی و داده های حاصل از طیف FT-IR

Bookmark not defined.

جدول (4-13): مقادیر \(\tau\) برای شکل های مختلف هندسی کمپلکس های چهارکورودینه

Bookmark not defined.

Error!
فهرست نمودارها

Şماره و عنوان نمودارها

Error! Bookmark not defined.Zn(II) نمودار (1-1) : نمودار طیف جذب و نشر لیگاند و کمیلکس
فصل اول

مقدمه‌ای بر مطالعه تئوری کمپلکس‌های شیف-باز
مقدمه
انتخاب گروه‌های گوگر و نیتروژن در مطالعه های ساختاری و واسطه‌های آنزیم‌ها در شامل ترکیبات فلزات واسطه می‌باشند که در این راستا مولکول‌های نیکل، مس، کربن و روی انجام گرفته، اشاره می‌شود.

با توجه به اهمیت شیف پل شده و کمپلکس‌های آن‌ها، هدف ما در این پروژه تهیه کمپلکس‌های شیف‌پل شده بر پایه دو ترکیب بررسی داده‌های آن‌ها به‌عنوان محاسباتی توری جولین دانسی‌تی و DFT نیویورک حاصل نمود. این ماده به شیف‌پل رتشین و آمین کردن، این روش در تهیه کمپلکس‌های شیفپل‌پلناز، کاربرد باهاره آن‌ها در مطالعاتی که در رابطه با کمپلکس‌های شیف‌پل‌پلناز با پون‌های فلزی نیکل، مس، کربن و روی انجام گرفته، اشاره می‌شود.

1- تاریخچه شیف‌پل‌پلنازها
در سال 1481، پورگنر ۱ و ورنر ۲ و اتلهینگ ۳، محصول بلوی سیز تیره‌ای را از واکنش مس استات (II) دستیابی کردند. این ماده بیتس (سالسیل آلی‌فانی) مس (II) بود. پس از این کار در سال

1-Schiff bases
2-Jorgensen
3-Werne
4-Atheling
1869، هوگوشیف توانست با تغییر گروه‌های R و استفاده از مشتقات آریل، روش تهیه طبقه بندی شده‌ای برای
سنتر این مولکول‌ها و کمپلکس‌های آن‌ها ارائه دهد. این تحقیق برای بافت‌شناسی نام شیمی‌پزشکی به این ترکیبات
شیمیایی داده شد. به طوری که اولین شیف‌پزشک سنتزی را به هوگوشیف 1 در سال 1869 نسبت داده‌اند
(Amane et al, 1992)
در دو دهه اخیر، شیف‌پزشکی‌ها به عنوان لیگاندهای کم‌کننده، یک نقش کلیدی را در شیمی
کنترل‌پذیری فلزات وسطه و همچنین فلزات گروه اصلی، ایفای کرده‌اند. این لیگانده‌ها می‌توانند به راحتی،
kمپلکس‌های اول‌دامی را با اغلب یون‌های فلزات وسطه ایجاد کنند. این لیگانده‌ها اغلب از مسیرهای سنتزی
مستقیم یا بازده خوب و درجه خلوص بالا حاصل می‌شوند. این اینکه این لیگانده‌ها بیشتر از سایر لیگانده‌ها
مورده توجه شیمی کنترل‌پذیری‌های باشنده به خواص الکترونی و حالیت مناسب آن‌ها در حلال‌های رایج،
دسترسی ساده برای تهیه آنها و تنوع ساختاری‌های گسترده این ترکیبات موجب می‌شود (Ashraf et al, 2011)
کمپلکس‌های فلزات وسطه با لیگاندهای شیف‌پزشک دهنده اکسیژن و نیتروژن به خاطر توانایی‌شان در داشتن
پیکربندی‌های منتوپ و تنوع ساختاری از اهمیت ویژه‌ای برخوردارند. کمپلکس‌های فلزی حاصل از لیگاندهای
شیف‌پزشکی که دارای به دو نوع اتم‌های دهنده ساخت مثل اکسیژن و نیتروژن و اتم‌های دهنده نرم‌سولفور در
ساختارشان توسط، اغلب خواص الکترونی و شیمیایی جالی نشان می‌دهند. همچنین سنتر و استفاده از شیف
پازمانه نا متقارن به یون‌های کاتیون‌های برای انواع ویژگی‌ها بیش از قبل مورد توجه قرار گرفته است
(Ramachandran et al, 2008)
ترکیب نامتقارن اجاهزه‌ی می‌دهد که هم خواص الکترونی و هم اثرات فضایی به طور همزمان تنظیم شوند و
به طور کلی عملکرد شیف‌پزشکی را افزایش می‌دهد. در کمپلکس‌های شیف‌پزشک نامتقارن، فلز مربوط به
شیمیایی مشابه با متالولیپورین‌های ترجمه می‌کند ولی این می‌توان از لیگاندهای شیف‌پزشک نامتقارن در مطالعه انگیزه‌ی برای بررسی
رفتار پورپورین‌ها استفاده کرد. بسیاری از گروه‌های تحقیقاتی تلاش خود را بر سنتر و مطالعه لیگاندهای شیف
پازمانه نا متقارن و کمپلکس‌های فلزی آنها متمرکز کرده‌اند. بیشتر این لیگانده‌ها با تراکم مولکول‌ها به مرحله دی‌آمین
مناسب با دو ترکیب کربوئید متفاوت حاصل می‌شوند. این ترکیبات ممکن است به عنوان کاتالیزگر برای
سازاری از تبدیل‌های آلی و همچنین برای طراحی حسگرها به کار روند (Ashrafy et al, 2010)
1- روش تهیه لیگاندهای شیف‌باز

لیگاندهای شیف‌بازی از تراکم آمین‌های نوع اول با ترکیبات کربنیلی دار حاصل می‌شوند. گروه عمومی مشخصه شیف‌بازی‌ها که آزمونی با آمین نامیده می‌شود و دارای پیوند دوگانه کربن نیتروژن (R: C=NR) است.

از نظر ساختاری ایمین‌های هستند که محصول تراکمی واکنش آمید‌ها، کتونها با آمین‌های نوع اول و مشتقات آنها هستند.

[شکل 1-1] واکنش تهیه لیگاندهای شیف‌باز

ایمین‌های حاصله از طریق جفت الکترون‌های غیرپیوندی نیتروژن خود، با فلزات واسطه اتصال دارند.

مشابه آلدیدها، کتونها نیز قادر به تشکیل لیگاندهای شیف‌باز می‌باشند اگر چه لیگاندهای ستزی با کتون‌ها، مانند آلدیدها مداول نیستند (Young et al., 2012).

کمپلکس‌های فلزی حاصل از لیگاندهای شیف باز کالرال، فضاگذینی خویی در تبادل‌های آلی نشان می‌دهند از این رو سنتز کمپلکس‌های کالرال، بخش مهمی از تحقیقات جدید در زمینه شیمی کامودینامیک است.

Jesmin et al., 2010.

2- طبقه‌بندی لیگاندهای شیف‌باز

ترکیبات شیف‌باز بر اساس تعداد اتم‌های کتورپینه مشترک آنها به دسته‌های دندانی، سه‌نامه، چهارندانه و تیتر کم می‌شوند.

[شکل 1-2] انواع لیگاندهای شیف‌باز در دندان‌های چهارندانه سه‌نامه و دندان‌های چهارندانه
همچنین لیگاندهای شیف-پاژ از لحاظ تقارن به دو دسته متفاوت و نا متفاوت تقسیم‌بندی می‌شوند. شیف-پاژ متفاوت از تراکم دی‌آمین با دو ترکیب کربنیل پکسند و شیف-پاژ نامتقارن از تراکم دی‌آمین با دو ترکیب کربنیل مختلف به دست می‌آید (brodowska et al, 2014).

1- اهمیت و کاربردهای مهم کمپلکس‌های سنتز شده با لیگاندهای شیف-پاژ

برای شیف-پاژ‌ها به عنوان لیگاندهایی که قادر به تشکیل کمپلکس‌های بایدار با بسیاری از بونه‌های فلزی اند، کاربردهای فراوانی گزارش شده است. کمپلکس‌های شیف-پاژ تأثیر به‌سرایی به عنوان کاتالیزور در واکنش‌هایی از قبیل اکسیداسیون استرس، ایپکسایش الکتریکی، برمدارکند اولفین‌های بنزولی، اکسایش سولفیدها به سولفوکسید و... دارند. همچنین گزارش‌هایی در مورد استخراج و اندوزگیری بیونه‌های فلزات سنگین موجود در نمونه‌های حیاتی توسط لیگاندهای شیف-پاژ ارتقاء شده است (brodowska et al, 2014).

در مقالات کاربردهای زیادی از شیف-پاژ‌ها در بیولوژی گزارش شده که از جمله آنها می‌توان به موارد زیر اشاره کرد:

1- خواص مغناطیسی
2- خواص کاتالیزیک
3- خواص دارویی
4- خواص ولتوئرسانی
5- خواص نوری غیرخطی
6- فعالیت آنزیمی

1-4- خواص مغناطیسی کمپلکس‌های شیف-پاژ

اخیرا بررسی خواص مغناطیسی کمپلکس‌های چنددهتهای فلزات و استحکام به لیگاندهای شیف-پاژ، سیبیار مورد توجه قرار گرفته است. این ترکیبات، دارای خواص مغناطیس مولکولی منفرد و مغناطیس زنجیری منفرد بوده و به عنوان پیش‌ماده‌ای برای مواد مغناطیسی مولکولی به کار برده می‌شوند. ترکیبات مغناطیس مولکولی منفرد، یک آسیب کند مغناطیسی شدن که ناشی از اثر ترکیب حالت پایه بر اسبیپین و آنیزوتروپی تک محوری می‌باشد را نشان می‌دهند. آنیزوتروپی تک محوری یک سد انرژی به‌نواهیت منابع حالت‌های براسیلین و کواسیبلین تولید می‌کند.
به ذکر پیدا شده در حیطه سیاستهای با اسپین بالا و اسپین پایین، این ترکیبات ممکن است به طور ذاتی به عنوان ذخیره گهواره اطلاعات در سطح نازک مولکولی بکار روده. علاوه بر آن، این ترکیبات ممکن است به عنوان سیستم‌های منحصربه‌فرد برای مطالعه توسعه رنگ کونپومینهای اسپینی و تداخل فاز کمپومین عمل کنند که به کاربرد این ترکیبات در الکترونیک مولکولی موجب می‌شود.

اخیرا کمپلکس‌های منگنز (III) به خاطر نقش مهمی که در زمینه مغناطیسی مولکولی دارند، سیاست مورد توجه واقع شده‌اند. کمپلکس‌های شیف-باز دوسته‌های منگنز (III) به دلیل حضور مرکز بارا مغناطیسی در ساختارشان در زمینه مغناطیسی مولکولی از اهمیت ویژه برخوردارند. کمپلکس‌های دوسته‌های نیکل (II) خاصیت فرومغناطیسی دارند (Deoghoria et al, 2003).

\[(I) \]
\[(II) \]

شکل (1-3): کمپلکس نیکل (II) دوسته‌های شیف-باز

(2-4) خواص کاتالیزگری کمپلکس‌های شیف-باز

به شیبتر کمپلکس‌های شیف-باز، خواص کاتالیزگری بسیار خوبی در واکنش‌های متقارن و در دماهای بالاتر از 100 درجه سانتی‌گراد و در حضور رطوبت، نشان می‌دهند. در جنگ سال اخیر، کاربردهای زیادی از این کمپلکس‌ها به عنوان کاتالیز‌گرای همگن و ناهمگن گزارش شده است. پون فلزی مانند روی (II)، با عملکرد‌های آنتیوی و کاتالیزگری خود، نقش مهمی را در شیمی معدنی زیستی دارا می‌باشد. لیگاندهای شیف-باز شامل دهنده‌های قوی، مانند اتوماتیک فنکسون نیز همانند اتوماتیک نیتروزن ایمین، گروه‌های بسیار عالی در فرآیند‌های کاتالیزگری و بیولوژیکی می‌باشند. واکنش‌های یک‌تک‌نواز که توسط کمپلکس‌های شیف-باز، کاتالیز می‌شوند، عبارتند از: واکنش‌های بایمریزاسیون بارکیند حلقه سیكلو-آکنتن‌ها و اپوکسیدها، اپوکسیداسیون، اسکایسیش هیدروکرین‌های شیف-باز Cu(II) و Fe(II)، Ru(II)، Fe(II) و ... کمپلکس‌های مشتق شده از هیدروسیرکس باز آن‌ها در اسکایسیون سیكلو-هگزان به سیكلوهگزانول و سیكلوهگزانون در حضور هیدروژن پراکسید استفاده می‌شود (Brodowska et al, 2014).
1-4-1-خواص دارویی کمپلکس‌های شیف‌باز

اختاراً پژوهشگران به شیف‌بازهای شامل دهندکی هترو اتم (نیتروژن و اکسیژن)، به دلیل پایداری و فعالیتی بیولوژیکی بسیاری از کمپلکس‌های آنها علاقه مند شدند. بررسی نتایج حاصل از این کمپلکس‌ها، نشان می‌دهد که بعضی داروهای زمانی که به عنوان کمپلکس‌های فلاور تهیه می‌شوند نسبت به لیگاندهای آزاد فعالیتی بیشتری نشان می‌دهند.

لیگاندهای شیف‌باز از لحاظ خواص دارویی نظر ضدباکتری، ضدودرگر و ضدیت‌پیشگیران جالب‌تر می‌باشند. همچنین شیف‌بازها بالقوه داروهای ضدسرطانی مفیدند و وقتی که از آنها در تهیه کمپلکس‌های فلورسنت استفاده می‌شود خاصیت ضدسرطانی این کمپلکس‌ها در مقایسه با لیگاند آزاد، تقویت می‌شود. نتایج جدید مربوط به خواص دارویی شیف‌بازهای فلورسنت نشان می‌دهد که بعضی از کمپلکس‌های شیف‌باز کلکت (II) به عنوان عاملی ضد‌بакتری می‌تواند شناخته شده و راه‌های جدیدی برای تحقیق درباره پرهم‌کنش‌های کلکت (II) با پروتئین‌ها و نوکلئزی‌های دیگر کرده است. همچنین کمپلکس‌های شیف‌باز کلکت (II) با دو آمین در موقعیت محوری به عنوان عاملی ضد‌بکتری و ضد‌پاکتری به کار می‌روند (Brodowska et al, 2014).

ترکیبات منگنز و آهن به عنوان یک عامل افزاینده وضوح در تصویربرداری MRI محسوب می‌شوند و به دلیل داشتن ویژگی‌های الکتریکی یکپ�دی و دو-بعدی کاربردهای زیادی در تولید وسایل جدید الکتریکی و مغناطیسی دارند (Ashraf et al, 2010).

1-4-2-خواص فلوروسانسی کمپلکس‌های شیف‌باز

مطالعه خواص فلوروسانسی ترکیبات شیف‌باز سپاره کم می‌باشد. از میان روش‌های شناسایی تلفیق فلوروسانس به خاطر ماهیت انتخاب پذیری و حساسیت بالای آن، به میزان کمتری نسبت به سایر روش‌ها مورد بررسی قرار گرفته است. همچنین ماهیت ذاتی بعضی از ترکیبات در فرآیند فلوروسانس، می‌تواند حساسیت این خواص را کاهش دهد. جدیداً ترکیبات لومنسانس به خاطر کاربردهای گسترده‌اش نشان نور افت و اندازه‌گیری نوری، مواد نوری برای فتوکاتالیست‌ها و انجره‌گیری فلوروسانس برای آن‌الیت‌های آن و معدنی سپاره مورد توجه قرار گرفته‌اند. معرفی گروه‌های الکترون دهنده کمپلکس‌های روزی (II) سالومیلدین، بازه کوانتوی فلوروسانس‌ها را تقویت می‌کند (Tianzhi Yu et al, 2008).
5-4-1 خواص نوری غیرخطی

در سال‌های اخیر، شیفت‌های به عنوان مواد مولکولی با خاصیت نوری بسیار مورد توجه قرار گرفته است. این مواد کاربرد گسترده‌ای در ذخیره‌سازی اطلاعات، مخابرات تلفنی و ارتباطات دوربرد، مبادلات نوری، پردازش سیگنال‌ها و... دارند (Chun-Guang Liu et al., 2006).

5-4-2 فعالیت آنزیمی

کمپلکس‌های سه هسته‌ای مس (II) با لیگانده‌های شیفت‌پذیر دهنده نیتروژنی و گوگردی در شکستن و تقصیم نقش دارند.

حدود ۲۰ آنزیم از روی شناخته شده که عموماً مرکز فلزی در آنها به انعم‌های دهنده ساخت مثل نیتروژن یا اکسیژن منصوب است.

کمپلکس‌های شیفت‌پذیر دارای کپسولالدهدی و مشترک آن دارای فعالیت دیسکوتاسیو و سپرایکسیدها هستند (brodowska et al., 2014).

5-5-1 مطالعات تنوری کمپلکس‌های شیفت‌پذیر

علی اکبر خاندار و همکاران در سال ۲۰۱۰ لیگاندهای شیفت‌پذیر با دهنده‌های Ni۲, O۲ و N۳S۲ و کمپلکس‌های Ni۲, O۲ و N۳S۲, و (II) نیکل و (II) مس از سنتز و ساختارها را به کمک پراش پرتونی, محاسبات DFT و مطالعات الکتروشیمیایی بررسی کرده‌اند.

یک سری از لیگاندهای شش دندانهای H۲L۴ (m=1-4), H۲L۴ (m=1-4), H۲L۴ (m=1-4), H۲L۴ (m=1-4) پیروی ۲-ايلتمیلین [۲-۲-۴،۲-۲-۴] یک لیگاندهای سه دندانهای H۲L۴ (m=1-4), H۲L۴ (m=1-4), H۲L۴ (m=1-4), H۲L۴ (m=1-4) یک لیگاندهای سه دندانهای H۲L۴ (m=1-4), H۲L۴ (m=1-4), H۲L۴ (m=1-4), H۲L۴ (m=1-4) این لیگاندها با مس (II) استات و نیکل (II) استات به نسبت 1:1 کمپلکس‌هایی با فرمول مولکولی (M۲L۴, M=Ni, Cu) را ساخته و شماری از تشکیل لیگاندها در شکل (1-۲) آمده است.
<table>
<thead>
<tr>
<th>Surname: Rostami</th>
<th>Name: Fatemeh</th>
</tr>
</thead>
</table>

Title of Thesis: Investigation on the electronic structure and properties of N_4S_2 Schiff base ligand and its complexes with some of the transition metals using DFT

Supervisors: Dr. Amir Naser Shamkhali, Dr. Marjan Abedi
Advisor: Dr. Abolfazle Bezaat poor

Graduate Degree: Master of Science (M. Sc.)
Specialty: Physical Chemistry
University: Mohaghegh Ardabili
Faculty: Department of Applied Chemistry
Graduation date: 2015/1/
Number of pages: 100

Abstract:
In the present research the potentially hexadentate Schiff base ligand $[1,2\text{-di(N-tiophenoxy - pyridin-2-Carboxaldehiny)}\text{ ethan}] (L)$, was prepared by condensation reaction of $[\text{pyridine- 2- carboxaldehyde}]$ with $[1,2\text{-di (o-amino thiophenoxy) ethane}]$ that can encapsulate transition metal ions with an N_4S_2 donor set. Reaction of ligand with Nickel (II), Copper (II), Cobalt (II) and zinc (II) perchlorate salts give $ML\text{(ClO}_4\text{)}_2(M = \text{Ni, Cu, Co, Zn})$. The synthesised ligand and its complexes have been characterized by FT-IR, elemental analysis, conductometry, Uv-visible and crystal structure determination only for the $\text{NiL(ClO}_4\text{)}_2\text{H}_2\text{O}$. Electronic structure of the Ligand and its complexes were investigated with calculations methods type of DFT by density B3LYP and TZVP basis set. In the basis of these studies, cobalt(II), Nickel(II) and zinc(II) cations are in distorted octahedra coordination environments while the CuL(ClO$_4$)$_2$ complex has a seesaw coordination geometry. DFT calculations were used to analyse the electronic structure and simulation of the electronic absorption spectrum of the complexes gives results that are consistent with the measured spectroscopic behavior of the complexes.

Keywords: DFT, hexadentate Schiff base, Electronic structure, pyridine-2-carboxaldehyde, crystal structure
This is submitted in partial fulfilment of the requirements for the degree of M.Sc. in Physical Chemistry

Title:

Investigation on the electronic structure and properties of N₄S₂ Schiff base ligand and its complexes with some of the transition metals using DFT

Supervisor:
Amir Naser Shamkhali (Ph.D)
Marjan Abedi (Ph.D)

Advisor:
Abolfazl Bezaatpor (Ph.D)

By:
Fatemeh Rostami

February- 2015