پایان‌نامه برای دریافت درجه کارشناسی ارشد در رشته مهندسی منابع طبیعی گرایش مرتعی در بهبود اکوسیستم‌های مرتعی شمال سبلان

عنوان
تعیین اثر تغییرات ارتفاع و تیپ پوشش گیاهی بر میزان ترسیب کربن خاک در اکوسیستم‌های مرتعی شمال سبلان

اساتید راهنما:
- دکتر اردوان قربانی
- دکتر کاظم هاشمی مجد

اساتید مشاور:
- مهندس بهنام بهرامی
- مهندس میکائیل بدرزاده

پژوهشگر:
سیما لازمی زارع

تابستان 1396
چکیده
آزمایش ترسره کربن در خاک، محققان رتبه‌بندی کربن در اکوسیستم‌های مرتعی شمال سیلان انجام گرفت. در این آزمایش، مدل Co2 پیامدهای اثر افزایش تریتان نسبت به کربن در خاک و در اثر افزایش سطح مورد بررسی قرار گرفت. این آزمایش با توجه به مقدار اضافه شده این کربن در خاک انجام شد. در این آزمایش، تفاوت‌هایی در کربن و فیزیک خاک باعث شد که آزمایش‌های قبلی در این زمینه بکار رود. نتایج نشان داد که سطح اضافه شده کربن در خاک و مقدار اضافه شده کربن در خاک باعث تغییراتی در خاک شد و این تغییرات باعث تغییراتی در خاک شد. در این آزمایش، تفاوت‌هایی در کربن و فیزیک خاک باعث شد که آزمایش‌های قبلی در این زمینه بکار رود. نتایج نشان داد که سطح اضافه شده کربن در خاک و مقدار اضافه شده کربن در خاک باعث تغییراتی در خاک شد و این تغییرات باعث تغییراتی در خاک شد.
<table>
<thead>
<tr>
<th>صفحه</th>
<th>عنوان</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>فصل اول: مقدمه و کلیات پژوهش</td>
</tr>
<tr>
<td>5</td>
<td>1-1 مقدمه</td>
</tr>
<tr>
<td>6</td>
<td>2-1 بیان مسئله</td>
</tr>
<tr>
<td>7</td>
<td>3-1 سوال‌های پژوهش</td>
</tr>
<tr>
<td>7</td>
<td>4-1 فرضیه‌های پژوهش</td>
</tr>
<tr>
<td>7</td>
<td>5-1 هدف پژوهش</td>
</tr>
<tr>
<td>7</td>
<td>6-1 ضرورت و اهمیت پژوهش</td>
</tr>
<tr>
<td>9</td>
<td>فصل دوم: پیشینه تحقیق</td>
</tr>
<tr>
<td>10</td>
<td>2-1 مطالعات خارجی کشور</td>
</tr>
<tr>
<td>13</td>
<td>2-2 مطالعات داخل کشور</td>
</tr>
<tr>
<td>20</td>
<td>فصل سوم: مواد و روش پژوهش</td>
</tr>
<tr>
<td>20</td>
<td>3-1 مواد و روش‌ها</td>
</tr>
<tr>
<td>21</td>
<td>1-3 منطقه مورد مطالعه</td>
</tr>
<tr>
<td>22</td>
<td>1-1-1 منطقه نمونه‌برداری</td>
</tr>
<tr>
<td></td>
<td>2-1-3 تهیه نمونه‌برداری منطقه</td>
</tr>
<tr>
<td></td>
<td>3-1-3 ارتقای از سطح دیدن</td>
</tr>
<tr>
<td>22</td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td>22</td>
<td>4-1-3 اثرات سطح چسب</td>
</tr>
<tr>
<td></td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td></td>
<td>جهت فیبر (چترالی)</td>
</tr>
<tr>
<td></td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td></td>
<td>متوسط بارندگی سالانه</td>
</tr>
<tr>
<td></td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td></td>
<td>متوسط دمای سالانه</td>
</tr>
<tr>
<td></td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td></td>
<td>روش تحقیق</td>
</tr>
<tr>
<td></td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td></td>
<td>-1-2-3 شناسایی مناسب ترین محل نمونه‌برداری</td>
</tr>
<tr>
<td></td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td></td>
<td>-2-2-3 روش نمونه‌برداری</td>
</tr>
<tr>
<td></td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td></td>
<td>1-2-2-3 پوشش گیاهی</td>
</tr>
<tr>
<td></td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td></td>
<td>2-2-2-3 خاک</td>
</tr>
</tbody>
</table>
فصل چهارم: نتایج و یافته‌های پژوهش

فصل پنج‌م: نتیجه‌گیری و بحث

آمار و تحلیل داده‌ها

1- نتایج تجزیه و ارتباط خصوصیات فیزیوگرافی، پوشش گیاهی و خاک

2- مقایسه میانگین صفات خاک در دو عمق 15-30 و 30-15 سانتی‌متری

3- مقایسه خصوصیات خاک در افق‌های اول و دوم خاک در هر رویشگاه

4- همبستگی داده‌های مربوط به خاک با میزان ترسیب کربن در سه رویشگاه

5- تیمین مهترین عامل مؤثر بر کربن آلی خاک از طریق زبرسیون

آمار و تحلیل داده‌ها

1- نتایج تجزیه و ارتباط خصوصیات فیزیوگرافی، پوشش گیاهی و خاک

2- مقایسه میانگین صفات خاک در دو عمق 15-30 و 30-15 سانتی‌متری

3- مقایسه خصوصیات خاک در افق‌های اول و دوم خاک در هر رویشگاه

4- همبستگی داده‌های مربوط به خاک با میزان ترسیب کربن در سه رویشگاه

5- تیمین مهترین عامل مؤثر بر کربن آلی خاک از طریق زبرسیون

آمار و تحلیل داده‌ها

1- نتایج تجزیه و ارتباط خصوصیات فیزیوگرافی، پوشش گیاهی و خاک

2- مقایسه میانگین صفات خاک در دو عمق 15-30 و 30-15 سانتی‌متری

3- مقایسه خصوصیات خاک در افق‌های اول و دوم خاک در هر رویشگاه

4- همبستگی داده‌های مربوط به خاک با میزان ترسیب کربن در سه رویشگاه

5- تیمین مهترین عامل مؤثر بر کربن آلی خاک از طریق زبرسیون
<table>
<thead>
<tr>
<th>صفحه</th>
<th>عنوان</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>جدول 2-1. خلاصه تحقیقات انجام گرفته در رابطه با ترسبیب کریم در خارج از کشور.</td>
</tr>
<tr>
<td>18</td>
<td>جدول 2-2. خلاصه تحقیقات انجام گرفته در رابطه با ترسبیب کریم در داخل کشور.</td>
</tr>
<tr>
<td>Error! Bookmark not defined.</td>
<td>جدول 4-1. تجزیه واریانس خصوصیات فیزیوگرافی منطقه و مشخصه‌های خاک در روش‌گاه‌های مورد</td>
</tr>
<tr>
<td>Error! Bookmark not defined.</td>
<td>جدول 4-2. تجزیه واریانس صفات خاک در دو عمق در روش‌گاه‌های مورد مطالعه...</td>
</tr>
<tr>
<td>Error! Bookmark not defined.</td>
<td>جدول 4-3. نتیجه آزمون Test برای مقایسه صفات خاک در بین دو عمق...</td>
</tr>
<tr>
<td>Error! Bookmark not defined.</td>
<td>جدول 4-4. تجزیه همبستگی بین صفات اندازه‌گیری شده خاک و ترسبیب کریم خاک...</td>
</tr>
<tr>
<td>Error! Bookmark not defined.</td>
<td>جدول 4-5. تجزیه رگرسیون گام به گام کریم آلی خاک(متغیر تابع) با عوامل خاک عمق اول...</td>
</tr>
<tr>
<td>Error! Bookmark not defined.</td>
<td>جدول 4-6. تجزیه رگرسیون گام به گام کریم آلی خاک(متغیر تابع) با عوامل خاک عمق دوم...</td>
</tr>
<tr>
<td>61</td>
<td>16</td>
</tr>
</tbody>
</table>
فهرست اشکال

<table>
<thead>
<tr>
<th>صفحه</th>
<th>عنوان</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>شکل 1-1. چرخه کربن جهانی</td>
</tr>
<tr>
<td></td>
<td>شکل 3-1. موقعیت جغرافیایی منطقه مورد مطالعه در استان اردبیل و کشور.</td>
</tr>
<tr>
<td>20</td>
<td>شکل 3-2. موقعیت سایت‌ها و نواحی نمونه‌گیری.</td>
</tr>
<tr>
<td>21</td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td></td>
<td>شکل 3-3. نقشه مدل رقمی ارتفاعی (DEM)</td>
</tr>
<tr>
<td></td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td></td>
<td>شکل 3-4. نقشه طبقات ارتفاعی و موقعیت سایت‌ها.</td>
</tr>
<tr>
<td></td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td></td>
<td>شکل 3-5. نقشه طبقات شیب منطقه مورد مطالعه.</td>
</tr>
<tr>
<td></td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td></td>
<td>شکل 3-6. نقشه طبقات چهارت شیب منطقه مورد مطالعه.</td>
</tr>
<tr>
<td></td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td></td>
<td>شکل 3-7. نقشه طبقات متوسط بارندگی سالانه منطقه مورد مطالعه.</td>
</tr>
<tr>
<td></td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td></td>
<td>شکل 3-8. نقشه طبقات متوسط دمای سالانه منطقه مورد مطالعه.</td>
</tr>
<tr>
<td></td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td></td>
<td>شکل 4-1. مقایس‌های میانگین درصد خاک (لاشیرگ) در رویش‌گاه‌های مورد مطالعه.</td>
</tr>
<tr>
<td></td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td></td>
<td>شکل 4-2. مقایس‌های میانگین درصد خاک لخت در رویش‌گاه‌های مورد مطالعه.</td>
</tr>
<tr>
<td></td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td></td>
<td>شکل 4-3. مقایس‌های میانگین درصد سنگ و سنگریزه در رویش‌گاه‌های مورد مطالعه.</td>
</tr>
<tr>
<td></td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td></td>
<td>شکل 4-4. مقایس‌های میانگین درصد بوشش‌ناجی در رویش‌گاه‌های مورد مطالعه.</td>
</tr>
<tr>
<td></td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td></td>
<td>شکل 4-5. مقایس‌های میانگین تراکم کل در رویش‌گاه‌های مورد مطالعه.</td>
</tr>
<tr>
<td></td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td></td>
<td>شکل 4-6. مقایس‌های میانگین ارتفاع از سطح دریا در رویش‌گاه‌های مورد مطالعه.</td>
</tr>
<tr>
<td></td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td></td>
<td>شکل 4-7. مقایس‌های میانگین درصد شیب در رویش‌گاه‌های مورد مطالعه.</td>
</tr>
<tr>
<td></td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td></td>
<td>شکل 4-8. مقایس‌های میانگین بارندگی در رویش‌گاه‌های مورد مطالعه.</td>
</tr>
<tr>
<td></td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td></td>
<td>شکل 4-9. مقایس‌های میانگین دما در رویش‌گاه‌های مورد مطالعه.</td>
</tr>
<tr>
<td></td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td></td>
<td>شکل 4-10. مقایس‌های میانگین رس عمق اول خاک در رویش‌گاه‌های مورد مطالعه.</td>
</tr>
<tr>
<td></td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td></td>
<td>شکل 4-11. مقایس‌های میانگین درصد سبیل عمق اول خاک در رویش‌گاه‌های مورد مطالعه.</td>
</tr>
<tr>
<td></td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td></td>
<td>شکل 4-12. مقایس‌های میانگین درصد شن عمق اول خاک در رویش‌گاه‌های مورد مطالعه.</td>
</tr>
<tr>
<td></td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td></td>
<td>شکل 4-13. مقایس‌های میانگین درصد کربن آلی عمیق اول خاک در رویش‌گاه‌های مورد مطالعه.</td>
</tr>
<tr>
<td></td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td></td>
<td>شکل 4-14. مقایس‌های میانگین درصد ماده آلی ذره‌ای عمیق اول خاک در رویش‌گاه‌های مورد مطالعه.</td>
</tr>
<tr>
<td></td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td></td>
<td>شکل 4-15. مقایس‌های میانگین درصد ماده آلی ذره‌ای عمیق اول خاک در رویش‌گاه‌های مورد مطالعه.</td>
</tr>
</tbody>
</table>

Bookmark not defined.
شکل 4-19 مقایسه‌های هیدرولیک عمق‌های خاک در روش‌هایی مورد مطالعه

شکل 4-21 مقایسه‌های وزن مخصوص نظارتی عمق‌های خاک در روش‌هایی مورد مطالعه

شکل 4-22 مقایسه‌های درصد رس عمق‌های خاک در روش‌هایی مورد مطالعه

شکل 4-23 مقایسه‌های درصد رس عمق‌های خاک در روش‌هایی مورد مطالعه

شکل 4-24 مقایسه‌های درصد سیلت عمق‌های خاک در روش‌هایی مورد مطالعه

شکل 4-25 مقایسه‌های درصد شن عمق‌های خاک در روش‌هایی مورد مطالعه

شکل 4-26 مقایسه‌های درصد کربن آلی عمق‌های خاک در روش‌هایی مورد مطالعه

شکل 4-27 مقایسه‌های درصد ماده آلی عمق‌های خاک در روش‌هایی مورد مطالعه

شکل 4-28 مقایسه‌های درصد کربن آلی درهای عمق‌های خاک در روش‌هایی مورد مطالعه

شکل 4-29 مقایسه‌های درصد آلی درهای عمق‌های خاک در روش‌هایی مورد مطالعه

شکل 4-30 مقایسه‌های اسیدیتی عمق‌های خاک در روش‌هایی مورد مطالعه

شکل 4-31 مقایسه‌های هیدرولیک عمق‌های خاک در روش‌هایی مورد مطالعه

شکل 4-32 مقایسه‌های درصد نیتروژن عمق‌های خاک در روش‌هایی مورد مطالعه

شکل 4-33 مقایسه‌های وزن مخصوص نظارتی عمق‌های خاک در روش‌هایی مورد مطالعه

شکل 4-34 مقایسه‌های درصد سیلت عمق‌های خاک در هر روش‌هایی

شکل 4-35 مقایسه‌های درصد شن عمق‌های خاک در هر روش‌هایی

شکل 4-36 مقایسه‌های درصد رس عمق‌های خاک در هر روش‌هایی

شکل 4-37 مقایسه‌های درصد رس عمق‌های خاک در هر روش‌هایی

شکل 4-38 مقایسه‌های درصد کربن آلی عمق‌های خاک در هر روش‌هایی

شکل 4-39 مقایسه‌های درصد ماده آلی عمق‌های خاک در هر روش‌هایی
شکل ۴–۴۰ مقایسه درصد کربن آلی ذره‌ای خاک عمق اول با عمق دوم در هر روش‌گاه...
Defined.

شکل ۴–۴۱ مقایسه درصد ماده آلی ذره‌ای خاک عمق اول با عمق دوم در هر روش‌گاه...
Defined.

شکل ۴–۴۲ مقایسه اسیدیته خاک عمق اول با عمق دوم در هر روش‌گاه...........
Defined.

شکل ۴–۴۳ مقایسه هدایت الکتریکی خاک عمق اول با عمق دوم در هر روش‌گاه.................
Defined.

شکل ۴–۴۴ مقایسه درصد نیترورژن خاک عمق اول با عمق دوم در هر روش‌گاه................
Defined.

شکل ۴–۴۵ مقایسه وزن مخصوص ظاهری خاک عمق اول با عمق دوم در هر روش‌گاه....
Defined.

شکل ۴–۴۶ مقایسه ترسره کربن خاک عمق اول با عمق دوم در هر روش‌گاه.
فصل اول
مقدمه و کلیات پژوهش
با توجه به افزایش روزافزون غلظت دی اکسید کربن اتمسفری به دنبال افزایش جمعیت، احترام
سوخت‌های فسفاتی ناشی از فعالیت‌های صنعتی و تغییر کاربری اراضی (چنل، 2003)، بر اهمیت پیده‌ی
زیان‌بار تغییر اقلیم و افزایش گرمایش جهانی باعث شده‌یکی از مهم‌ترین چالش‌های در توسعه‌ی پایدار
تأکیدی گردید (پی. پ.، 2000). فرایندهای اکوسیستمی و فعالیت‌های بیولوژیکی گیاهان
به‌عده‌ی این تاثیر تغییرات اقلیمی است که تحت تاثیر تغییر اقلیمی است در طول قرن 21 پیش‌بینی شده
است (آی. پی. سی، 2007). دی‌کسید کربن یکی از گاز‌های گلخانه‌ای است که در طول دهه‌های
اخر افزایش مقدار آن در اتمسفر سبب گرم شدن زمین شده است. هر چند دی‌کسید کربن (CO2)
چیزی حدود 33/0/2 درصد حجم اتمسفر را اشغال کرده است، اما کربن بخش‌هایی از زیست‌های
را تشکیل می‌دهد که برای حیات نو‌ده‌گیاهی جزو ملزمات جاری است (اندرسون و همکاران، 2008).
این گزاره‌هایی از مهارتی عناصری در بدن موجودات زنده به‌شمار می‌آید که به‌طور مظم بین
بخش زنده و غیرزنده در تبادل است. گیاه، ماده اساسی در ساخت‌مان جهان آنی است و در مواد آلی
متعدد از زغال سنگ و نفت یا سلول زنده دیده می‌شود (اردکانی، 1388).

کاهش گیاهی آن‌ها خاک در اثر فاکتورهای زیادی ازجمله: کاهش مقدار بوم‌ساز بی‌گسترشی به خاک، تغییر
روز و نیازمندی خاک از طریق تاثیر در نسبت نجیب‌های ماده‌آلی، تجربه‌بی‌پایایی بالای بقایای
و مقدار لیگنین، کاهش تراکم خاک، کاهش حفاظت فیزیکی از ماده‌آلی خاک و افزایش فرسایش خاک می‌تواند اتفاق بیافتد. بقایای گیاهی از مهم‌ترین اشکال و رود
مواد آلی به شکل مهندسی به شکل برگ، شاخه، ریشه‌ها و ترشحات ریشه‌ای می‌شود. بقایای گیاهی در
شکل‌های نیازی استوانی 11/0 تن در هکتار در سال، در جنگل‌های گرم‌سیری 6/0 تن در
منطقه جنگل‌های بارانی استوانی 11/0 تن در هکتار در سال، در جنگل‌های گرم‌سیری 6/0 تن در
علی‌ترین گرم‌سیری 3/0 تن و در بیابان‌ها کمتر از 0/5/0 تن در هکتار در سال، هم‌اکنون وارد خاک

1. Cannell
2. UNDP: United Nations Development Program
3. IPCC: Intergovernmental Panel On Climate Change
4. Anderson
میکند. محصول نهایی تمامی تجزیه‌های میکرو‌پیو مواد آلی خاک دی‌اکسید کربن است (هالوین، 1999).

شکل 1-1- چرخه کربن جهانی (لال، 2004)

مرکز توسعت پایدار در آمریکا ترسریب کربن را تبدیل دی‌اکسید کربن انمسفری به ترکیبات آلی کربن دار توسط گیاهان بیان می‌کند که طی عمل فتوستز صورت می‌گیرد (آلن-دیاس، 1996)، ترسریب کربن عبارت است از تغییر دی‌اکسید کربن انمسفری به شکل ترکیبات آلی کربن‌دار که توسط گیاهان و تخیر آن برای مدت زمان معین است. این فرآیند طی عمل فتوستز توسط گیاهان صورت می‌گیرد، لذا به منظور کاهش دی‌اکسید کربن و ایجاد تعادل در محتوای گازهای گلخانه‌ای، می‌باشد کربن حذف و در فرم‌های گوناگون ترسریب شود، گیاهان با جذب آب و دی‌اکسید کربن انمسفری و مهار انرژی ساطع شده از خورشید توسط کلروفیل و طی فرآیند فتوستز به ترسریب کربن می‌پردازند و دی‌اکسید کربن را به هیدرات‌های کربن تبدیل می‌کند (لال، 2004).

ترسریب کربن در زیرزمین گیاهی و خاک‌هایی که تحت این زیرزمین هستند، ساده‌ترین و به‌حفظ اقتصادی عمیق ترین راهکار ممکن جهت کاهش دی‌اکسید کربن انمسفری است (نولن و بلدورس، 2000)

1. Halvin
2. Allen-Dias
3. Lal
4. Noel & Blood Worth
ویلیام، 2002. اکوسیستم‌های مرجعی پتانسیل بالایی در ترسیب کربن دارند، زیرا نیمی از خشکسایی زمین را در بر داشته و ذخیره کربن آنها 10 درصد کل ذخایر کربن بیوماس اکوسیستم‌های خاکی و درصد کربن آلی خاک را تشکیل می‌دهند (درنر و همکاران، 1997).

در ایران مراتع بخش وسیعی از کشور را در برگرفته است که در این بین مناطق این 47 درصد از کل مراتع کشور را تشکیل می‌دهد (مصداقی، 1386). خاکهای مراتع استی بعنوان یکی از مهم‌ترین اجزای این اکوسیستم باعث ذخیره کربن مورد مطالعه قرار گرفتند، زیرا خاکهای سوسنی ذخیره‌گاه بزرگ کربن در جهان هستند (الاتی، 2004). همچنین در منابع ارزش هر هکتار مرجع در ارتباط با ترسیب کربن از 50 تا 300 دلار محاسبه شده است (لوسیک و همکاران، 2000). در بالا خاک در جنگل اغلب در سطح زمین انباشتی می‌شود که این امر تجربه آنها را نسبت به کربن آلی مراتع تسریع می‌نماید و نیز مشخص شد کربن آلی خاک مراتع نسبت به خاک جنگل از انحال کمتری پرخوردار است. این امر باعث کاهش پتانسیل آب‌شویی آنها و نیز کند شدن فرآیند فساد و تجدید آنها می‌شود. لذا با توجه به این که خاک، بخش مهمی از کربن آلی را در هر اکوسیستم در خود جای داده، مراتع اهمیت خود را به عنوان یک محزن برگ جهت ترسیب کربن نمایان می‌سازند (مایگروت و بوتینگ، 2005).

تغییر در کربن مراتع می‌تواند تابعی از مدیریت و فناوری‌های محیطی باشد. محاسبات نشان می‌دهد که مراتع حدود 3200 میلیون هکتار از سطح کره زمین را به خود اختصاص می‌دهند. در داخل این منع عظمی میزان کربن حدود 200-200 گیگا تن کربن آلی و حدود 550-470 گیگا تن کربن معدنی تا عمق یک متری خاک ذخیره شده است. به همین دلیل در پروتکل کیتو به مراتع جهت کاهش انتشار گازهای گلخانه‌ای توجه ویژه‌ای شده است و مراتع شامل گراس لندی‌ها، چراگاه‌ها، بوته‌زارها، سالنافا و گراس لندی‌ها مناطق خشک است. پس مدیریت اراضی مراتع می‌تواند نقش مهمی در توانایی کلی داخل خاک باشد. لذا به یادآوری است فعالیت‌هایی که باعث ذخیره کربن می‌شود می‌تواند تاثیرات مثبتی بر تولیدات دامی و انزایش بهره‌گیری اقتصادی دامداران داشته باشد (هیل، 2003).

1. William
2. Derner
3. Lal
4. Luciuk
5. Miegroet & Bettinge
6. Hill
با توجه به اینکه بالایی کنن با نحوه مصنوعی هزینه‌های سنگینی در پی خواهد داشت و در آمریکا این هزینه را حدود 100 تا 300 دلار برای هر تن کربن در هکتار ثبت‌نمای زده‌اند (چنل، 2003). لذا این امر موجب برتری روشهای ترشیپ بیولوژیک کربن به‌وسیله پوشش‌گاهی و خاک تحت پوشش آن نسبت به روشهای مصنوعی شده است. که از این طریق، می‌توان در قابل عملیات اصلاح و احیا، مراتع علاوه بر دست‌بایی به سایر مزایای بهبود وضعیت مزروع، به‌هدف ذخیره‌سازی کربن نیز نائل آمد.

(یوان.دی.پی، 2000).

1-2- بیان مسئله

مراتع حاوی بیش از یکسوم ذخایر کربن زیست‌کره خاکی (خانلری و همکاران، 1392) و از مهم‌ترین اکوسیستم‌های خشکی جهت ترسیب کربن به‌شمار می‌رود (آی.پی.سی. سال 2007، اگرچه مقدار ترسیب کربن مران در واحد سطح ناجی‌است، ولیکن باتوجه به وضع باقی آن‌ها، این اراضی دارای قابلیت زیادی جهت ترسیب کربن می‌باشند (اسچیپن، 4 و همکاران، 2002).

مراتع از نظر اقتصادی، اجتماعی و زیست‌محیطی از همیت ویژه‌ای برخوردار هستند و در صورتی که بطور صحیح مدیریت و بهره‌برداری شوند، می‌توانند نقش مهمی در شکوفایی اقتصاد منطقه‌ای ایفا کنند (برایان و همکاران، 2014). مسائل زیست‌محیطی به‌ویژه آلودگی ناشی از گازهای گلخانه‌ای در اتسفر مران را تحت تأثیر قرار داده است (موزو و حمامی، 1393؛ مک آلپین و همکاران، 2010).

به‌همین علت، روشهایی در جهت کاهش گازهای گلخانه‌ای شناسایی شده که می‌توان به ترسیب کربن خاک‌ها و گیاهان اشاره کرد (لال، 2004).

از انتخابی که مقدار کربن موجود در خاک و گیاه به ویژه‌های فیزیوگرافی (ارتفاع و شیب) استگنی دارد، هر نوع تغییر در ارتفاع و شیب منطقه‌منج به تغییرات در منیژ کربن‌آلی موجود در خاک و پوشش‌گاهی خواهد شد (آدرنیوند و زارع چاهوکی، 1389؛ زانگ و رو، 2009). علاوه‌بر موارد ذکر

1. Cannell
2. UNDP: United Nations Development Program
3. IPCC: Intergovernmental Panel On Climate Change
4. Schuman
5. Bryan
6. McAlpine
7. Lal
8. Zhong & Xu
شده، مدیریت و بهره‌برداری صحیح از مراتع مستلزم شناسایی و یک‌گیتی گونه‌های اصلی تشکیل دهنده و واکنش این گونه‌ها به تغییرات فیزیوگرافی (ارتفاع) می‌باشد. جوامع گیاهی به عنوان بخش مهم و اساسی اکوسمپت‌های مرتعی، از طریق توبوگرافی به‌همراه عوامل اقلیمی و خاک شکل می‌گیرند. مدیریت اصولی این اکوسمپت‌ها، با شناخت عرصه‌های گیاهی در ارتباط عوامل محیطی مبزر می‌شود. همچنین با توجه به این مورد که ترسب کریک انسپری یکی از مهم‌ترین کارکردهای اکوسمپت‌های طبیعی خصوصا مراتع به شمار می‌آید، کمی سازی این مهم در خصوص گونه‌های گیاهی و خاک هر منطقه، روش مناسبی برای حفاظت، توسعه و ارزش‌گذاری واقعی اکوسمپت‌های طبیعی می‌باشد.

با توجه به افزایش گاز کربنیک و گرم شدن تدریجی هزاره‌ها که یک مسأله گچ‌های است و مربوط به همه کشورها می‌باشد، و همچنین با توجه به وسعت بالایی اراضی مرتعی، تحصیلات در زمینه ترسب کریک در اکوسمپت‌های مرتعی ضروری به‌نظر می‌رسد (مهندی و همکاران، 1394).

بنا براین، با توجه به فرار گرفتن بخش اعظم مراتع ایران در ناحیه خشک و نیمه‌خشک و وجود گونه‌های بیشتری پایا و مقایم به نشانه‌های زیست‌محیطی و مهم‌تر از همه بومی بودن اکثر این گونه‌ها، لازم بررسی آن از نظر قابلیت میزان ترسب کریکی که به‌ویژه در مناطق تابستان حفاظت کمی و کیفی شرایط خاک، راهکاری جهت مقابله با آلودگی هوای ریزی اقلیمی و در نهایت دست‌یابی به توسعه پایدار تلقی‌گردد (بهرامی و همکاران، 1392). بنا براین، مسائل ناشناخته زیادی در رابطه با قابلیت و تووانایی خاک‌های مرتعی در زمینه ترسب کریک در مناطق مختلف اقلیمی کشور وجود دارد که حل مسائل مذکور، نیازمند انجام تحصیلات گسترده است.

1- سوال‌های پژوهش

1- آیا تغییرات ارتفاع در مراتع شمال سبلان تاثیر معنی‌داری بر تغییر میزان ترسب کریک در سطح یک واحد فیزیوگرافی دارد؟

2- آیا تغییرات پوشش گیاهی در ارتفاعات مختلف شمال سبلان تاثیر معنی‌داری بر تغییر میزان ترسب کریک در خاک دارد؟

1. Physionomic
1- فرض‌های پژوهش

1- در ارتفاعات مختلف شمال سیستان و در سطح یک واحد فیزیونومیک میزان ترسرپ کربن خاک تفاوت معنی‌داری دارد.

2- تیپ‌های علف - بوتهزار و علف‌زار در شمال سیستان بر اساس تغییر ارتفاع دارای ترسرپ کربن خاک متغیرتند می‌باشند.

1- هدف پژوهش

شناسی کمی تأثیر تغییرات ارتفاع در دو تیپ بوتهزار گیاهی علف - بوتهزار و علف‌زار بر میزان ترسرپ کربن خاک و برآورد میزان کربن ترسرپ شده در واحد سطح تیپ‌های علف - بوتهزار و علف‌زار اکوسیستم مرتبط شمال سیستان و شناسی طبقه‌بندی که دارای قابلیت بیشتری جهت ترسرپ کربن هستند و ارائه راهکار‌هایی جهت مقابله با افزایش غلظت دی‌کسید کربن اتمسفری، آلودگی و رسیدن به توسعه پایدار می‌باشد.

1- ضرورت و اهمیت پژوهش

مراجع، حدود نمی‌آی شکل‌های جهان را تشکیل می‌دهد و دارای یک سوم از ذخایر کربن زیست‌کره خاکی می‌باشد. باید به اینات که تغییر در کربن خاک در اثر تغییر کاربری اراضی و زیست‌کره مدیریت عرصه مرتبط ممکن است بگرددن های زیادی در تراکم دی‌کسید کربن اتمسفری ایجاد کند. کاهش ذخیره کربن آلی خاک با افزایش احتمال فراشیسی‌پذیری و فشردگی خاک و افزایش رواناب اثر زیادی بر ساختمان خاک می‌گذارد (هورو، 2003). به منظور کاهش دی‌کسید کربن اتمسفری در محیط‌های گازهای کلخانه‌ای کربن اتمسفری باید جذب و در فرم‌های آلی ترسرپ گردد که این مهم از طریق ایجاد یا افزایش میزان نگهدارنده‌های کربن (گیاهان) انجام می‌گیرد و در این میان اکوسیستم‌های مرتبط به عنوان یک «برگ‌ترین» زیست‌بوم خشک‌های علاوه بر افزایش نقش تولیدی و حفاظت خاک به عنوان بستر‌های مهم ترسرپ کربن در مناطق جنگلی و مرتبطی، نوده‌های جنگل کاری شده و جنگل شهری در نقاط مختلف جهان انجام گرفته است.

1. Hoover
عوامل مؤثر بر ذخيره كربن را مي توان در دو دسته عامل هاي محلي و عامل هاي مديریتی دسته‌بندی کرد. عامل هاي محلي مؤثر بر ذخيره كربن را مي توان ويزغي هاي خاکي، تهویه‌گرایي و اقلیمی نام برد (پووری، 1389) و از طرف دیگر مديریت مناسب خاک مي تواند یک گروه مناسب برای رسوب كربن در خاک و همچنين سرعت بخشيدن به روند کاهش آلاینده‌ها باشد (هو و همکاران، 2015: كار 7 و همکاران، 2015 و فریا و همکاران، 2016). يكي از راهکارهای شاخته‌شده بر اساس مطالعات انجام شده برای كنترل اين پديده، روش‌های دانش‌آموزاني كربن انفسيري است که عمل كردن گرای نام دارد و به دو روش غير‌پيستي و زيستي انجام مي‌گرديد (كر، 7). از انجليزي كه اقيمت و تيوپلازي از مهمترین عوامل مؤثر بر خصوصيات خاک به‌شمار مي‌روند (ساربلايدير و همکاران، 2005)، ارتفاع از سطح دريا يكي از مهمترین عواملی است که با تاثير بر تشکيل و تكميل خاک، تغييرات دما، بارندغي و رطوبت بر نوع و تراکم بيوت روندهاي مرتعي اثر يابسياي دارد. ارتفاع زمني كه با محدوديتي اقليمي همراه شود به عنوان يک عامل محدودکننده در استقرار و رشد گياهان محسوب مي‌شود (بارنس، 1998).

گونه‌های مرتعی نيز از طريق فرآيند تفتستن و جذب كربن به عنوان بزرگترین منبع ورود كربن به خاک محصول شده و داري نش كليدي در فرآيند ترسيب كربن در اکوسيستم هستند. همانطور كه بيان شد مناطق خشک و نيمه‌خشک نش كيي مهمي در ترسيب كربن دارند، و بخش اعظم مراحي ايران نيز در مناطق خشک و نيمه‌خشک واقع شده كه مي تواند تأثير مهمي در اين زمينه ایفا كند. با وجود اينكه مطالعات زيادي در زمينه ترسيب كربن در ايران انجام گرفته است (مهندوي و همکاران، 1394؛ شيدايى كرچ، 1394).

مراحي كشور ما نيز گونه‌های مناسبی برای تحقيق پروراوند طرح‌های ترسيب كربن هستند، مي توانيم ارزش اقتصادي مقدار كربن ترسيب شده در مراحي را به دست آورده و به پردازاري اقتصادي از مراحي داشته باشيم (بهرامي و همکاران، 1392). بنابراین در اين تحقيق به بررسی اثر ارتفاع و تپ گياهی در ميزان ترسيب كربن خاک در مراحي شمال سبلان پرداخته مي‌شود.

1: Hu
2: Carr
3: Ferreira
4: Kerr
5: Sariyildiz
6: Barnes
فصل دوم
پیشینه تحقیق
2- بررسی پیشین تحقیق

2-1- مطالعات خارجی کشور

با توجه به اهمیت ترسيپ کرين خاک در تعديل تغييرات اقليمي، محققان زيادي ارتباط بين عوامل محیطی مختلف با بوشش گياهی را در مناطق مختلف جهان مطالعه و بررسی کرده‌اندكه از جمله این مطالعات می‌توان به وومر و توره (2004) اشاره کرد. آن‌ها طی مطالعاتی در سنجال درباره ميزان کرين ذخيره شده در گياه و خاک در 5 تيمار شامل اراضی مخلوط خلف- بوتهزار، غلفرز، اراضي بوته‌ي و درخت‌ي بیان كردن حدول 60 درصد از کرين آلي خاک در عمق 20 سانتي‌متری خاک ذخيره‌شده است. همچنین درتر و همکاران (2007) در مطالعه‌ي پیرامون ترسيب گرين در مرايغ به اين نتيجه رسيدند که اكوسیستم‌های مرتعي توان بالايی در ترسيب کرين دارند و ذخيره کرين آن‌ها 10 درصد كل ذخيره کرين بیوماس اكوسیستم‌های خاکی و 30 درصد كل کرين آلي خاک را تشکيل مي‌دهد.

هي 3 و همکاران (2009)، در تحقیق خود در چين ضمن تأكيد بر اهميت کرين آلي در زيست‌بوم‌های مرتقي به بررسی تغييرات اين فاكتور كيي خاک در سه عمق 10-0، 20-10 و 40-20 سانتي‌متری در اثر چراي دام پرداخته و به اين نتيجه دست يافتند كه عدم چراي دام بهطور معنني داري کرين خاک را در عمق 10-0 سانتي‌متری نسبت به غلفرز چرا شده افزايش مي‌دهد.

سالو و همکاران (2010) در تحقیقی تحت عنوان توزیع ماده آلي خاک در اجزای اندازه‌اي ذرات تحت شرایط چرخ‌ساز و تولید محصول زراعی با سیستم‌های شخم و بدون شخم حفاظتی به اين نتیجه رسیدند که تغييرات مقدار کرين در اجزای مختلف بيشتر منطقت به لايه 3 سانتي‌متری خاک است و اين نتیجه بوسیله تغييرات و اندازه‌گيري مواد آلي ذرات (POM) و اجزاي معدني خاک بهدست آمده که نتایج بیانگر اين تکتی بودن كه عدم شخم باعث بهبود شاخص‌های اندازه‌گيري شده مي‌شود. شان 1 و

1. Woomer & Toure
2. Derner
3. He
4. Salvo
5. Particulate Organic Matter
6. Shan
همکاران (2010) با مطالعه تأثیر بلندمدت عدم شکم زمین‌های زیرکشت درخت بر اجزای کربن آلی خاک با استفاده از فاکتور مواد آلی ذراتی (POM) در خاک‌های درشت، متوسط و ریز شاهد افزایش میزان مواد آلی درخت در حالته بدن‌های سبک شکم در مقایسه با شکم خورده شده بودند و در این بین کربنعلق‌دار موجود در ریز‌حاکمان‌ها برای ترسبیب بلندمدت کربن در خاک سود‌مندتر است و همچنین کربن موجود در ریز‌حاکمان‌ها جهت بررسی تأثیر سیستم‌های شکم و زرع کاربرد بهتری دارد. بدی و همکاران (2010) در تحقیقات خود پیرامون تأثیر میانکاری گونه‌بندی هل المسه در مطالعه‌های زیرکشت درخت بر میزان اجزای مواد آلی ذراتی به این تئیه دست یافتند که مقدار مواد غذایی با مواد آلی خاک دریافتند که نیتروژن و کربن آلی خاک در اراضی کشاورزی نسبت به یک‌رخ‌های بیشتر بوده Fabaceae و Poaceae و بیشترین میزان کربن آلی خاک در اراضی تحت کشت مخلوط گیاهان خانواده وجود دارد. برند و همکاران (2011) پیرامون مواد آلی ذراتی درخت منابع اولیه نیتروژن معدنی در خاک‌های سه توده جنگلی به این تئیه رسیدند که نیتروژن معدنی تریچلا بین مواد آلی ذراتی تغذیه می‌گردد و صرف نظر از خصوصیات شیمیایی خاک و نیتروژن موجود در لاش‌گیر سریخت و سایششن نیز به محضی سریع‌تر واکنش نشان می‌دهد. لی و همکاران (2011) نیز در نتایج تحقیق خود در پنجه دیشب دانست هیچ فاکتوری بوده که با افزایش شدت چرا در منطقه تحت چراش شدید، مقدار کربن آلی به طور معنی‌داری افزایش پیدا می‌کند. ناباران، اذعان

1. Beedy
2. Handayani
3. Particulate Organic Matter Carbon
4. Particulate Organic Matter Carbon
5. Nomeda
6. Bernd
7. Li
داشتند چرا دام می‌تواند اثری مثبت بر ویژگی‌های خاک و ازجمله کربن آلی داشته باشد. لیو و همکاران (2011) در مطالعه خود در فلات چین نشان دادند که عامل ارتفاع، تأثیر معنی‌داری بر میزان کربن آلی خاک داشته است. به طوری که بیشترین میزان کربن را مربوط به ارتفاع بالا و کمترین آن را در ارتفاعات پایین گزارش کردند. آنها دلیل این امر را نخز پایین تجزیه کربن آلی خاک به دلیل دما پایین ارتفاعات بالاتر یافته نمودند. صن و همکاران (2012) اثربند چرا را در دوره‌های 12-25 ساله در ذخیره‌سازی کربن آلی خاک در منطقه نیمه‌خشک تخریب شده شنی در چین ارزیابی کردند و به این ترتیب رسیدند که قرو چرابی سبب افزایش ترسیب کربن آلی خاک می‌شود. اکن و همکاران (2014) در مطالعه‌ای که درباره ارایابی تاثیر اکتشافات فیزیوگرافی منظور Acatenary در جنوب شرقی نیجریه داشتند، منطقه مورد مطالعه را به نمایش می‌آورد که در این منطقه کربن آلی خاک در جنوب شرقی نیجریه داشتند. نتایج تجزیه و ارایابی نمونه‌های گرفته شده نشان داد که خاک به گسترش کربن آلی خاک در نواحی واش با شبکه بالا نسبت به شبکه پایینتر کمتر است. فقدان به حدس آمده بر حسب گرم بر سانتی‌متر مکعب به‌ترتیب 48/90 و 99/50 و 317 و 34/13 و 331/93 می‌باشد. افزایش ذخیره کربن در شبکه‌های پایین را نشان می‌دهد.

هوی و گوکی (2015) در مطالعات خود در چین نشان دادند که در کربن آلی و نیتروژن خاک به طور معنی‌داری در مناطق چرا شده کمتر از مناطق چرا نشده یا قرو می‌باشد. همچنین گزارش کردند که نیتروژن و کربن خاک در مناطق چرا نشده در دو عمیق 10-0 و 20-10 سانتی‌متر کاهش یافته و میزان کربن و نیتروژن در عمیق 10-0 کمتر از عمیق 20-10 سانتی‌متر می‌باشد. همچنین هوم گیوکا و همکاران (2016) در جنوب هند به بررسی تغییر کاربری جنگل به کشاورزی پردخانند که نتایج این تحقیق نشان داد، سهم کربن خاک در قطعاتی از جنگل که کشاورزی فعالیت بیش از حد 60 درصد داشته است. مربیم و همکاران (2017) به بررسی و مقایسه ترسبی کربن خاک در جنگل منطقه مختلف آب و هوایی دنیا پردخانند. نتایج به دست آمده حاکی از آن است که کشور سنگاپور با میزان 135 گرم

1. Liu
2. Chen
3. Okon
4. Hui & Guo Qi
5. Hombegowda
6. Merriman
کرین در متر مربع در یک سال نسبت به کشور آمریکا و سوئد بیشترین درصد ترسب کرین را داشته است.

2-2 مطالعات داخل کشور

در رابطه با ترسب کرین در داخل کشور نیز تحقیقاتی انجام شده است. نقی پور و همکاران (1387) اثر عوامل محیطی را بر پراکنش گونه‌های مرتعی مورد بررسی قرار دادند. آنها دریافت کردند که مهم‌ترین عوامل خاکی موتر در پراکنش و استقرار گونه‌های غالب منطقه، رطوبت و اسبیتیت، و از بین عوامل پستی و بلندی، ارتفاع از سطح دریا است. علیزاده و همکاران (1390) در مورد برآورد مقدار ترسب کرین خاک در مراتع استه رودخانه ساهو دریافتند، میزان کرین آلتی خاک در پای گیاهان با کرین موجود در حدفاصل گیاهان در هر منطقه به‌طور جدایی از هم‌وجودی اختلاف معنی‌داری در سطح ۵ درصد داشت. همچنین نتایج نشان داد مقدار کرین آلتی خاک در پای گیاه بیشتر از حدفاصل گیاه در تیمار قرق بود، در حالی که این نتیجه در مرتبت چرا شده معمولاً بود، نقی پور و همکاران (1391) به بررسی ترسب کرین خاک و زیسته گیاهی در مراتع طبیعی و دست کاشت در منطقه سیسیل بجنورد در پایتخت و چنین نتیجه گیری کردن که گونه‌ (Kocia prostrate) می‌تواند کرین آلتی را نسبت به تیمارهای دیگر شده دیگر با سرعت بیشتری ترسب نماید و خاک مهم‌ترین مخزن کرین آلی در مراتع می‌باشد. تمرناشو و همکاران (1391) در مورد اثر گونه‌های رویشی مختلف بر ترسب کرین در مراتع جنگل‌های میانکاله به این نتیجه دست پایان داد که میزان ترسب کرین در گونه‌ها و اندازه‌های گیاهی، متفاوت بوده و با افزایش سطح ناحیه پوشش و درصد چوبی شدن، افزایش می‌یابد.

بهرامی و همکاران (1392) اثر شیب و نوع پوشش گیاهی بر میزان ترسب کرین خاک در مراتع خشک و نیمه‌خشک شمال غرب ایران را مطالعه کردند و نشان دادند که حفظ و بهره‌برداری مناسب از پوشش گیاهی در شیب‌های پایین تر می‌تواند منجر به حفظ ذخیره کرین آلی خاک در مناطق خشک و نیمه‌خشک گردد. فلاح‌تکار و همکاران (1392) تاثیر پارامترهای اولیه تهیه‌گرایی و عامل پوشش/کاربری اراضی بر تراکم کرین آلی خاک در پیشی از اراضی شمال ایران را مورد مطالعه قرار دادند و به این ترتیب رسیدند که ارتباط معنی‌داری بین جهت جغرافیایی با SOCD یافت. مطالعه در هیچ پیک از

1. Soil Organic Carbon Density
کاربردی بیوشوه‌ها در عمق ۲۰-۵ سانتی‌متر و وجود ندارد. ارتفاع دارای نقش مؤثر بر تراکم کریست آلی اکوسیستم در اراضی چهارین که قبلاً تأثیر معنی‌دار در اراضی آب‌زایی را داشته و هم‌کاران (۱۳۹۲) توان ترسيم کردن خاک در انواع کاربری اراضی اکوسیستم را در حوزه آب‌زایی مطالعه کرده و به این ترتیب رسیدند که ترسيم کردن در خاک اکوسیستم مرتع طبیعی به میزان ۵/۲۰ تا ۴۴/۱۴ تا ۹۵/۰۲ در هکتار رخ داد. همچنین تنها چهار دیم‌زارهای کم‌ارتفاع به مرتع دست کاوش باعث افزایش معنی‌داری کردن خاک از ۲/۶۷ تا ۴۷/۰۲ در هکتار گردید. به طوری که خاک مرتع دست کاوش با میزان آن در مرتع طبیعی اختلاف معنی‌داری وجود ندارد. شیدای و هم‌کاران (۱۳۹۲) نشان دادند که اکوسیستم گونه‌های غربی بر میزان ترسيم کردن خاک را مورد ارزیابی قرار دادند و همچنین هزینه ترسيم کردن خاک در عملیات ارگانی مرتع توسط کشت (Atriplex lentiformis) و (Agropyron elongatum) گونه‌های ارزیابی و نتایج کلی اکوسیستم پژوهش آنها بیانگر آن است که کاشت و انجام برخی تخریبی توسط دو توانسخه میزان ترسيم کردن خاک را بهتریب ۲۱/۷۴ و ۲۰/۰۳ در هکتار افزایش دهد و بهصورت مفید بر افرازیه ترسيم کردن بر اثر بگذرد، بنابراین ادامه کاشت و انجام اراضی تخریب شده منطقه می تواند در ترسيم کردن مفید باشد. الفنی و (Pistacia atlantica)، یکی از گونه‌های (Acer) (۱۳۹۲) با برآورد ترسيم کردن چهارگونه به ده‌ها گونه (Ephedra procera) و افرازیه (Amygdalus scoparia) با آباد کوهی (Acer monspessulamum) حفاظت شده باغ شادی هرات، به این ترتیب رسیدند که پتانسیل ترسيم کردن بر حسب گونه‌های گیاهی، میزان و شیوه مدیریت منتفاوت است.

میرزاپور و هم‌کاران (۱۳۹۲) اثرات چندکاری با گونه‌های بومی و غربی بر مرتع ترسيم کردن خاک در مناطق خشک‌زار در پارک چندکاری باغ‌های دهلران مورد بررسی قرار دانست و به این ترتیب رسیدند که میزان ترسيم کردن خاک در منطقه متراکم رویشگاه‌ها را به‌طور ملی‌داری بیشتر از منطقه غیر متراکم بوده است. اما با توجه به چهار دو رویشگاه کنار و محور تفاوت معنی‌داری وجود ندادند. خانلار و هم‌کاران (۱۳۹۲) تأثیر قرب در پتانسیل ترسيم کردن در مرتع‌های مختلفی ساری را مورد بررسی قرار دادند. نتایج مطالعه آنها نشان داد که چرا موجب کاهش معنی‌دار ترسيم کردن از اندام هواپی‌ب زیرزمینی در هر دو منطقه تحت چرا و قرف گردد است.
جنگلی جغرافیا و همکاران (1392) با مطالعه اثر احداث فارو بر میزان ترسيب كردن و تثبیت ازت در
درمتهزارهای استان سمنان، به این نتیجه رسیدند که عملیات فارو در درمتهزارهای مورد مطالعه نتیج
متفاوتی بر ذخیره کردن و ازت اکوسیستم داشته. لشی زند و همکاران (1392) با توجه به نتایج
آزمایشات و تحلیل اطلاعات بسته آمده از سایه‌های مورد مطالعه که در جهت ارزیابی اثری‌خی
عملیات بیومئاری آب‌های خشکی در ترسيب کردن به‌منظور اصلاح تغیرات اقیمی در آبخوان‌دار
کوده‌ی و پوش سیب‌القمری انجام دادند، به این نتیجه رسیدند که در مکان‌هایی که بروز‌های
پخش سیب‌القمری از آنها صورت پذیرفت و گونه‌های گونه‌ای‌کوپی پخش کردند، شرایط ترسيب کردن نسب
به سایر هم‌هایی کشت شده در پخش سیب‌القمری و آبخوان مطلوب تر بوده است.

یوسفیان و همکاران (1393) تحت‌الیکا را به منظور بررسی اثر ارتفاع بر میزان ذخیره کردن تحت
توده و پوشش گیاهی گونه درمته دشتی در مرتع کیاس مازندران، در سه طبقه ارتفاعی
1000-500، 1000-1500 و 1500-2000 متی انجام دادند، نتایج آن‌ها بینانگان آن است که هرچه ارتفاع
افرازی‌ها باید، درصد پوشش ناجی، میزان بیومی و ترسيب کردن نیز زیاد می‌شود. شیادی و همکاران
(1394) طبق مطالعه‌های کاربردی روش‌های محاسبه‌ی مختلف در برآور میزان کردن در ترسيبی خاک را با
مطالعه موردی مرتع بیلاری چهاربخ استان گلستان را انجام دادند و به این نتیجه رسیدند که روش‌های
مرسومی که برای محاسبه‌ی ذخیره ماده‌ای استفاده می‌شوند به دلیل توده‌های نابرابر خاک به طور دقیق بیان
کننده تفاوت‌ها در توده‌ها نیستند و برای ارزیابی قابل اعتماد مدت‌بند ذخیره‌ی ماده‌ای خاک و ساب
مواد غذایی، باید توده‌های خاک مورد مقایسه، معادل باشد.

در تحقیق دیگر، مهدوی و همکاران (1394) قابلیت ترسيب کردن خاک مرتع کوهستانی کرمانشاه را
در سه طبقه ارتفاعی و چهار جهت جغرافیایی مورد بررسی قرار دادند. نمونه‌برداری خاک در دو عمق
30-0 و 60-30 سانتی متری خاک در روش‌گاه‌های گون سفید و گون زرد انجام گرفت. نتایج مقایسه
میانگین‌ها هم بین‌گیران این مطلوب است که بیشترین مقصد ترسيب کردن در طبقه ارتفاعی سوی و در جهت
جغرافیای شمالی است. همچنین با توجه به نتایج بسته آمده می‌توان بیان کرد که گونه گون زرد قابلیت
ترسيب کردن خاک بیشتری نسبت به گونه گون سفید دارد.

جنگلی و همکاران (1395) به منظور ارزیابی میزان ذخیره‌سازی کردن تحت شدت‌های متغیرات چربی
دام، پژوهشی را در منطقه حفاظت شده بیجار استان کردستان انجام دادند. سه منطقه کامل حفاظت شده،
منطقه جویان متوسط، منطقه جرای حسنگ به عنوان تیمارهای مختلف جرای دام انتخاب شدند. نتایج آنها

بیانگر آن است که با افزایش شدت جرای دام، ذخایر کربن خاک، زیست‌توسط گیاهی و لایه‌برگ کاهش

چشمم گیری داشته‌اند. میزان کربن آلی خاک نیز در منطقه قرق بیشتر از مناطق دیگر بوده است.

نظری و همکاران (1395)، با هدف بررسی تغییرات مکانی کربن آلی و ترسیب آن در خاک در حوضه

آبیخ که‌های آب‌انبار شیروان پژوهشی را انجام دادند. آزمایش‌های فیزیکی و شیمیایی روی نمونه‌های

خاک انجام گرفت و در نهایت با استفاده از سیستم اطلاعات جغرافیایی تغییرات مکانی پارامترها، درصد

کربن آلی و مقدار کربن آلی خاک و کل ترسیب کربن خاک در منطقه ظهیرآباد به‌پنده شد، نتایج

مقایسه میانگین درصد پوسته گیاهی آنها نشان داد که با افزایش درصد پوسته گیاهی، درصد کربن آلی

خاک و مقدار کربن آلی خاک زیت افزایش می‌یابد. با توجه به تحقیقات صورت گرفته می‌توان به این

نتیجه رسید که در زمینه ترسیب کربن در ایران پژوهش‌های کمی صورت گرفته و با توجه به اینکه

اکوسیستم‌های مرتعی تووان بالایی در ترسیب کربن دارند و قسمت اعظم مراتع کشورمان در مناطق

کوهستانی خشک و نیمه‌خشک قرار گرفته، ترسیب کربن می‌تواند بر ذخیره کربن آلی خاک کمک قابل

توجهی نماید. در ذیل با بررسی و جمع‌بندی تحقیقات انجام گرفته در خارج و داخل، نتایج در قلب

جدولی جهت مرور پژوهش‌های انجام گرفته در دنیا در سال‌های اخیر تهیه شده است تا امکان مقایسه

مطابقت با نتایج تحقیق حاضر بهتر می‌سر گردد (جدول 2-1 و 2-2).
جدول 2-1. خلاصه تحقيقات انجام گرفته در رابطه با ترسیب کربن در خارج از کشور

<table>
<thead>
<tr>
<th>منابع</th>
<th>میزان ترسیب کربن</th>
<th>روش نمونه‌برداری</th>
<th>رابطه ترسیب کربن</th>
<th>عمق</th>
<th>Cs : OC×Bd×e×(1-s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>وانگ و همکاران.</td>
<td>0.6</td>
<td>برداری خاک: 20-0 سانتی‌متر؛ نگیر کاربری اراضی</td>
<td>عمق 1: 12.43 جنگلی: 12.09 (ton/ km²×Y)</td>
<td>عمق 2: 9.94 جنگلی: 4.57 (kg/m³)</td>
<td>عمق 2: 2.64 (kg/m³)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>اورژیل و همکاران.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>استرالیا. ایالات مونارو و بروآ: خاک گرنیتی عمق 51.8 بردا: 8.8 (Mgr/ha)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شیب کم: عمق 1: 80/281، عمق 2: 331/93 شیب متوسط: عمق 1: 43/34 عمق 2: 137/34 شیب زیاد: عمق 1: 48/90 عمق 2: 136/75 (gr/m²)*

<table>
<thead>
<tr>
<th>میزان رها شده:</th>
<th>47.5</th>
<th>خاک‌های آنیسول جنوبی شرقی نیجریه، عمق 20-0 سانتی‌متر</th>
<th>هیزنن، اکون و همکاران</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>درختچه لال کوهن: 9 جنگل کاج اروپایی: 63.5 (Mgr/ha)</td>
<td>인천 و دوویک،</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>میزان کربن ترسیب</th>
<th>جرم مخصوص ظاهری:</th>
<th>عمق حاکم نمونه برداری</th>
<th>8 ضرب اصلاحی:</th>
<th>میزان کربن ترسیب:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cs</td>
<td>Bd</td>
<td>e</td>
<td>(1-F/100)</td>
<td></td>
</tr>
</tbody>
</table>

1. Vang
2. Liu
3. Orgill
4. Okon
5. Wasak & Drewnik
6. Merriman
جدول ۲-۲: خلاصه تحقیقات انجام گردنه در رابطه با ترسيب کربن در داخل کشور

<table>
<thead>
<tr>
<th>منبع</th>
<th>روش ترسيب کربن</th>
<th>رواي ترسيب کربن</th>
<th>ميزان ترسيب کربن</th>
</tr>
</thead>
<tbody>
<tr>
<td>فرق ميان مدت: ۲۲:۴۵ فرق</td>
<td>Cs: ۱۰۰۰ × OC × Bd × e</td>
<td>مراجع استنی روشن ساوه، عمق ترسيب کربن</td>
<td>عيابه و همکاران.</td>
</tr>
<tr>
<td>بلند مدت: ۱۷:۷۶ مرن</td>
<td>خاک: ۳۰-۰ سانتی‌متر</td>
<td></td>
<td>۱۳۹۰</td>
</tr>
<tr>
<td>(ton/ha) ۱۸:۵</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>زوده ۱</td>
<td>۱۲۴:۳</td>
<td>نوخت و همکاران.</td>
<td>۱۳۹۱</td>
</tr>
<tr>
<td>زوده ۲</td>
<td>۹۴:۷</td>
<td></td>
<td></td>
</tr>
<tr>
<td>زوده ۳</td>
<td>۸۷:۶</td>
<td>ديهبندان</td>
<td></td>
</tr>
<tr>
<td>(ton/ha) ۷۸:۱</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>زوده ۱</td>
<td>۷۸:۱۹</td>
<td>پار چنگلی بی‌گر</td>
<td>همکاران.</td>
</tr>
<tr>
<td>زوده ۲</td>
<td>۴۸:۴۸</td>
<td>توده جنگلی</td>
<td></td>
</tr>
<tr>
<td>بان: ۸:۸</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>کمک: ۷۰:۴۳</td>
<td>احتراق در کوره الکتریکی</td>
<td>اخلاقه سرخ رومیه، عمق ترسيب کربن خاک</td>
<td>عيابه و همکاران.</td>
</tr>
<tr>
<td>یافتن ۴۹:۲۷</td>
<td></td>
<td>خاک: ۳۰-۰ سانتی‌متر</td>
<td>۱۳۹۲</td>
</tr>
<tr>
<td>(Kg/ha) ۹:۰۵۴</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>تپ ۱</td>
<td>۷۳:۸۴</td>
<td>خاکئ سرخ اروپی، عمق ترسيب کربن خاک</td>
<td>عيابه و همکاران.</td>
</tr>
<tr>
<td>تپ ۲</td>
<td>۹۶:۱۰</td>
<td>۳۰-۰ سانتی‌متر</td>
<td>۱۳۹۲</td>
</tr>
<tr>
<td>تپ ۳</td>
<td>۵۲:۸۵</td>
<td>منطقه فرق و غير فرق</td>
<td></td>
</tr>
<tr>
<td>فرق</td>
<td>۹۷</td>
<td></td>
<td></td>
</tr>
<tr>
<td>غير فرق</td>
<td>۹۹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>کهنه ۱:۱</td>
<td>Cs: ۱۰۰۰ × OC × Bd × e</td>
<td>مراجع خاکئ سرخ ساری</td>
<td>عيابه و همکاران.</td>
</tr>
<tr>
<td>کوهن ۲:۱</td>
<td>خاک: ۱۵-۰ و ۰-۳۰</td>
<td></td>
<td>۱۳۹۲</td>
</tr>
<tr>
<td>(ton/ha) ۱۲:۸۷۲</td>
<td></td>
<td>عنصر غیر فرق و خاک</td>
<td></td>
</tr>
<tr>
<td>طبقه ۱</td>
<td>۹:۳۲</td>
<td>وی‌پام و همکاران.</td>
<td>مراجع کوهستانی کیاس اسناد مازندران، ۳ طبقه</td>
</tr>
<tr>
<td>طبقه ۲</td>
<td>۱۰:۹۳</td>
<td></td>
<td>ارتفاع، عمق ۰-۳۰</td>
</tr>
<tr>
<td>طبقه ۳</td>
<td>۱۳:۰۸</td>
<td></td>
<td></td>
</tr>
<tr>
<td>عمق ۱:</td>
<td>۲۹۴:۱</td>
<td>مراجع کوهستانی اسناد کرمانشاه</td>
<td>جهدی و همکاران.</td>
</tr>
<tr>
<td>عمق ۲:</td>
<td>۴۶۷:۲</td>
<td>در ۳ طبقه ارتفاعی</td>
<td>۱۳۹۴</td>
</tr>
<tr>
<td>عمق ۳:</td>
<td>۳۴۴:۱</td>
<td>عمق ۱۱۰۰-۱۵۰۰</td>
<td></td>
</tr>
<tr>
<td>عمق ۴:</td>
<td>۵۲۶:۲</td>
<td>عمق ۱۵۰۰-۱۹۰۰</td>
<td></td>
</tr>
<tr>
<td>عمق ۵:</td>
<td>۳۵۵:۱</td>
<td>عمق به بالا</td>
<td>۱۳۹۳</td>
</tr>
<tr>
<td>(ton/ha) ۵۸۶</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>عمق ۱:</td>
<td>۱۰۰:۱</td>
<td>اعماق ۶۰-۰۳۰</td>
<td></td>
</tr>
<tr>
<td>عمق ۲:</td>
<td>۳۱:۴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>عمق ۳:</td>
<td>۸۵:۸</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ton/ha) ۱۴:۹</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cs: ميزان كربن ترسبي; Oc: كربن آلی; Bd: جرم مخصوص ظاهری; Ce: عمق حاکم نمونه برداری; 8 ضريب اصلاحی;
فصل سوم
مواد و روش پژوهش
3- موارد و روش‌ها
3-1- منطقه مورد مطالعه
محدوده مورد مطالعه پروفیل ارتقایی فخرباد - شابلی شهرستان مشگین شهر با مساحت تقریبی 9747 هکتار در فاصله 23 کیلومتری جنوب شرقی شهرستان مشگین شهر با مختصات طول جغرافیایی $2^0 50' 47"$ و عرض جغرافیایی $18^0 18' 38"$ و $38^0 28'$ شمالی واقع شده است (شكل 1-3).

شکل 3-1. موقعیت جغرافیایی منطقه مورد مطالعه در استان اردبیل و کشور
مناطق نمونه‌برداری در پروflies ارتقاء آبگرم شاخص شهرستان مشگین شهر در شش سایت که شامل سه سایت علف-بوتهزار و سه سایت علفزار در جهت شمالی و در سه طبقه ارتقاء‌پذیر گزارش از 2000-2500 و بیشتر از 2500 متر از سطح دریا و در دو بخش مرتفع علف-بوتهزار و علفزار به انجام رسید. با استفاده از نقشه شیب و نقشه پوشش گیاهی منطقه مورد مطالعه با توجه به نقاط ارتقاء، توسط دستگاه موقعیت یاب جهانی (GPSC) انتخاب و مشخص گردید. در هر یک از سایت‌های مورد مطالعه به روش نمونه‌برداری که به صورت سیستماتیک پیده در روی هر یک از ترانسکت‌ها با فاصله 10 متری تعداد 10 پلاط در روی هر ترانسکت که جمعاً 30 پلاط در هر یک از سایت‌های مورد مطالعه

می‌باشد، نمونه‌برداری‌های مورد نیاز از قبل پوشش گیاهی و خاک انجام گرفت (شکل 3-2).

شکل 3-2 موقعیت سایت‌ها و نقاط نمونه‌برداری

1. Global Positioning System (GPS)
Increasing carbon sequestration in soil is a very good method to reduce atmospheric CO2 concentrations and has a very important role in reducing climate change and air pollution. In recent years, this subject has attracted the attention of various researchers. In this study, the carbon sequestration capacity and its relationship with physiographic characteristics of the area and physical and chemical characteristics of soil in sampling areas in the northern Sabalan in six sites, including three sites of shrubs and three grassland sites in the northern slopes and three classes elevation (less than 2000, 2500-2000 and more than 2500 m), and soil sampling at depths of 0-15 and 15-30 cm were conducted. A random-systematic method was used to study vegetation variables. In this way, within each of the studied areas, at least three transects with a length of 100 m, located along each transect, were established 10 plots of 1 m² (based on the distribution pattern of the plants). After determining the normality of the data and homogeneity of the variance of the data for general comparison of the two meadow and grassland types in terms of physiographic characteristics and coverage and soil of the region, and the interaction of factors (height and type of plant) from the two-way (GLM). In order to compare the soil properties in the first and second depths, one-way analysis of variance (ANOVA) and comparison of mean treatments by Duncan's multiple range test were used to compare the soil horizons in terms of soil characteristics in each site using t-test and correlation. Between the amount of organic carbon of soil with physiographic properties and soil area using Pearson correlation test and model Stepwise regression was performed using SPSS 17 software and Excel software was used to plot the graphs. The results of analysis of variance (GLM) indicate that there is a significant difference between the habitats in terms of physiography and soil. Accordingly, vegetation type and elevation have a significant impact on the characteristics of the region. The interaction of these two factors was also significant. Analysis of variance was performed for two depths. In both depths, the characteristics of soil quality such as clay and silt, carbon and organic matter, carbon and particulate matter, nitrogen and soil carbon content were measured in grassland habitats with an altitude of more than 2500 m and grassland with an elevation of 2000 to 2500 m and grassland habitat-shrub with maximum elevation of 2500 m. In addition, the percentage of gravel, pH, and electrical conductivity was also observed in grassland-shrubland with an elevation of 2000-2500 m, and grassland-shrub with an elevation of more than 2000 m. Moreover, the results of t-test showed that carbon and organic matter, carbon and particulate organic matter characteristics, electrical conductivity, nitrogen and carbon content in the first and second horizons in grasslands with an elevation of 2000 to 2500 m and grasslands with an elevation of more than 2500 m and grass-shrublands with an elevation above 2500 m had significant differences. The results of correlation coefficient indicated that soil carbonation had a positive correlation with soil quality characteristics such as clay and silt, carbon and organic matter, carbon and organic matter, nitrogen, while soil gravity, acidity and soil electrical conductivity had a negative correlation. The results of stepwise regression analysis of organic carbon with physical and chemical factors of soil and physiographic factors of the region at first and second depth showed that at the first depth, organic carbon, bulk density, electrical conductivity, altitude, nitrogen and organic carbon particle and also, in the second depth the soil, the percentage of organic carbon, bulk density, organic carbon particle, silt percentage, slope and elevation were the main components affecting the organic carbon storage of soil, and other factors had no significant effect on the organic carbon content of soil.

Abstract:

Increasing carbon sequestration in soil is a very good method to reduce atmospheric CO2 concentrations and has a very important role in reducing climate change and air pollution. In recent years, this subject has attracted the attention of various researchers. In this study, the carbon sequestration capacity and its relationship with physiographic characteristics of the area and physical and chemical characteristics of soil in sampling areas in the northern Sabalan in six sites, including three sites of shrubs and three grassland sites in the northern slopes and three classes elevation (less than 2000, 2500-2000 and more than 2500 m), and soil sampling at depths of 0-15 and 15-30 cm were conducted. A random-systematic method was used to study vegetation variables. In this way, within each of the studied areas, at least three transects with a length of 100 m, located along each transect, were established 10 plots of 1 m² (based on the distribution pattern of the plants). After determining the normality of the data and homogeneity of the variance of the data for general comparison of the two meadow and grassland types in terms of physiographic characteristics and coverage and soil of the region, and the interaction of factors (height and type of plant) from the two-way (GLM). In order to compare the soil properties in the first and second depths, one-way analysis of variance (ANOVA) and comparison of mean treatments by Duncan's multiple range test were used to compare the soil horizons in terms of soil characteristics in each site using t-test and correlation. Between the amount of organic carbon of soil with physiographic properties and soil area using Pearson correlation test and model Stepwise regression was performed using SPSS 17 software and Excel software was used to plot the graphs. The results of analysis of variance (GLM) indicate that there is a significant difference between the habitats in terms of physiography and soil. Accordingly, vegetation type and elevation have a significant impact on the characteristics of the region. The interaction of these two factors was also significant. Analysis of variance was performed for two depths. In both depths, the characteristics of soil quality such as clay and silt, carbon and organic matter, carbon and particulate matter, nitrogen and soil carbon content were measured in grassland habitats with an altitude of more than 2500 m and grassland with an elevation of 2000 to 2500 m and grassland habitat-shrub with maximum elevation of 2500 m. In addition, the percentage of gravel, pH, and electrical conductivity was also observed in grassland-shrubland with an elevation of 2000-2500 m, and grassland-shrub with an elevation of more than 2000 m. Moreover, the results of t-test showed that carbon and organic matter, carbon and particulate organic matter characteristics, electrical conductivity, nitrogen and carbon content in the first and second horizons in grasslands with an elevation of 2000 to 2500 m and grasslands with an elevation of more than 2500 m and grass-shrublands with an elevation above 2500 m had significant differences. The results of correlation coefficient indicated that soil carbonation had a positive correlation with soil quality characteristics such as clay and silt, carbon and organic matter, carbon and organic matter, nitrogen, while soil gravity, acidity and soil electrical conductivity had a negative correlation. The results of stepwise regression analysis of organic carbon with physical and chemical factors of soil and physiographic factors of the region at first and second depth showed that at the first depth, organic carbon, bulk density, electrical conductivity, altitude, nitrogen and organic carbon particle and also, in the second depth the soil, the percentage of organic carbon, bulk density, organic carbon particle, silt percentage, slope and elevation were the main components affecting the organic carbon storage of soil, and other factors had no significant effect on the organic carbon content of soil.

Keywords: Carbon sequestration, physical and chemical properties of soil, elevation, vegetation
University of Mohaghegh Ardabili
Faculty of Agriculture and Natural Resources
Department of Natural Resources

Thesis submitted in partial fulfilment of the requirements for the degree of
M.Sc. in Range Management

Title:
Evaluation of the effect of elevation and vegetation type on carbon
sequestration in rangeland ecosystems of North Sabalan

Supervisors:
Ardavan Ghorbani (Ph. D)
Kazem Hashemi Majd (Ph. D)

Advisors:
Behnam Bahrami (Ph. D)
Mikaeil Badr Zadeh (Ph. D)

By:
Sima Lazemi Zare

September – 2017