دانشکده کشاورزی و منابع طبیعی
گروه اموزشی منابع طبیعی

پایان نامه برای دریافت درجه کارشناسی ارشد
در رشته جنگلشناسی و اکولوژی جنگل

عنوان:
ارزیابی وضعیت سلامت اکو سیستم جنگل در حوزه ابختیزایی ایران، استان اردبیل

استاد راهنما:
دکتر فرشاد کیوان بهجو

استاد مشاور:
دکتر رؤف مستوفیزاده

پژوهشگر:
ایس جعفری

تاریخ ارسال: 1396
چکیده:
از شاخص‌های سلامت اکوسیستم گامی مؤثر در مدیریت و بهره‌برداری از اکوسیستم‌ها است. اخیراً از این شاخص‌ها برای ارزیابی وضعیت موجود و پیش‌بینی وضعیت آینده اکوسیستم‌های محیط زیست به‌کار رفته است. در این پژوهش شاخص سلامت اکوسیستم در نظر گرفته شده و این شاخص در جهت بررسی وضعیت موجود و پیش‌بینی وضعیت آینده اکوسیستم‌های محیط زیست از طریق سایر حوزه در شرایط مطلوب مورد بررسی قرار گرفته است. در این پژوهش اگر محیط زیست مطلوب است، شاخص سالم در این حوزه جزء حوزه‌های سالم محسوب می‌شود. اگر محیط زیست غیر مطلوب است، شاخص سالم در این حوزه جزء حوزه‌های نیازمند است. به‌طور کلی اگر محیط زیست مطلوب است، شاخص سالم در این حوزه جزء حوزه‌های سالم محسوب می‌شود. اگر محیط زیست غیر مطلوب است، شاخص سالم در این حوزه جزء حوزه‌های نیازمند است.
فهرست مطالب

فصل اول: مقدمه و کلیات

- 1-1 مقدمه... 1
- 2-1 کلیات... 2
- 2-1-1 بیان مسأله... 2
- 2-1-2 اکوئیمی سیمای سرمین... 5
- 2-1-3 سنجش‌های سیمای سرمین.. 5
- 3-1 سؤال‌های پژوهش.. 7
- 4-1 فرصت‌های پژوهش... 8
- 5-1 اهداف پژوهش.. 8
- 5-6-1 ضرورت و اهمیت پژوهش.. 10

فصل دوم: پیشینه پژوهش

- 1-1 مقدمه ... 11
- 2-1 پیشینه پژوهش در زمینه سلامت آگوسومتیم چهارم.. 11
- 2-2 مطالعات خارج از کشور.. 14
- 3-3 پیشینه پژوهش در زمینه اکوئیمی کاربردی اراضی و سنجش‌های سیمای سرمین... 17
- 3-1-1 مطالعات داخل کشور.. 17
- 3-1-2 مطالعات داخل کشور.. 20

فصل سوم: مواد و روش پژوهش

Error! Bookmark not defined.. 1

Error! Bookmark not defined.. 2

Error! Bookmark not defined.. 3

Error! Bookmark not defined.. 4

Error! Bookmark not defined.. 5

Error! Bookmark not defined.. 6

Error! Bookmark not defined.. 7

Error! Bookmark not defined.. 8

Error! Bookmark not defined.. 9

Error! Bookmark not defined.. 10
فصل چهارم: نتایج و یافته‌های پژوهش

این بخش تحلیل و بررسی نتایج پژوهش و یافته‌های آن را پوشش می‌دهد. نتایج ارزیابی سلامت اکوسیستم و روبکرد های مختلف وزندگی در حوزه‌های مختلف از طریق روش‌های مختلف تجزیه و تحلیل اورشول(boxplot)، آماری و جستجوی فرآیندهای مختلفی ارائه می‌شود. علاوه بر این، تحلیل همبستگی بین متغیرهای مختلف و تاثیرات آن‌ها بر سلامت اکوسیستم نیز بررسی می‌شود.

نتایج نشان می‌دهد که برخی متغیرهای اکوسیستمیی مانند NDVI، Erosion، Runoff و ایندیکاتورهای زیر آب و هوایی بهتر از دیگران عمل می‌کنند. از طرفی، نتایج نشان می‌دهد که برخی از متغیرهای اجتماعی و اقتصادی نیز تأثیراتی درباره سلامت اکوسیستم داشته و تاثیراتی مثبت یا منفی بر سلامت اکوسیستم دارند.

در نهایت، این بخش نشان می‌دهد که بررسی نتایج و یافته‌های پژوهش بهترین روش برای ارزیابی سلامت اکوسیستم است و می‌تواند به تصمیم‌گیری‌های افراد و نهادهای مختلف کمک کند.
سفرت منابع و مأخوذات:

فصل پنجم: بحث و نتیجه‌گیری

1-1-2-1-1-3-1-2-1-3-1-3
1-1-2-1-2-1-3-2-1-2
1-1-2-1-3-1-3-2-2-1-2
1-1-2-1-3-1-3-3-1
1-1-2-1-3-1-3-3-2
1-1-2-1-3-1-3-4-1
1-1-2-1-3-1-3-4-2
1-1-2-1-3-1-3-5-1
1-1-2-1-3-1-3-5-2
1-1-2-1-3-1-3-5-3
1-1-2-1-3-1-3-6-1
1-1-2-1-3-1-3-6-2
1-1-2-1-3-1-3-6-3
1-1-2-1-3-1-3-6-4
1-1-2-1-3-1-3-6-5
1-1-2-1-3-1-3-6-6
1-1-2-1-3-1-3-6-7
1-1-2-1-3-1-3-6-8
1-1-2-1-3-1-3-6-9
1-1-2-1-3-1-3-6-10
1-1-2-1-3-1-3-6-11
1-1-2-1-3-1-3-6-12
1-1-2-1-3-1-3-6-13
1-1-2-1-3-1-3-6-14
1-1-2-1-3-1-3-6-15
1-1-2-1-3-1-3-6-16
1-1-2-1-3-1-3-6-17
1-1-2-1-3-1-3-6-18
1-1-2-1-3-1-3-6-19
1-1-2-1-3-1-3-6-20
1-1-2-1-3-1-3-6-21
<table>
<thead>
<tr>
<th>شکل</th>
<th>عنوان</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1</td>
<td>مواقف حوزه آبخیز مورد مطالعه در استان اردبیل.</td>
</tr>
<tr>
<td>3-2</td>
<td>نمایی از حوزه آبخیز ایریل.</td>
</tr>
<tr>
<td>3-3</td>
<td>محیط نرم‌افزار Fragstats.</td>
</tr>
<tr>
<td>3-4</td>
<td>نمودار جراحی مراحل انجام تحقیق.</td>
</tr>
<tr>
<td>3-5</td>
<td>مقادیر زیرمیزان تغییردیفره سلامت اکوسیستم در حوزه آبخیز ایریل استان اردبیل.</td>
</tr>
<tr>
<td>3-6</td>
<td>مقادیر زیرمیزان فرسایش در حوزه آبخیز ایریل استان اردبیل.</td>
</tr>
<tr>
<td>3-7</td>
<td>تنش سطحی رودخانه آبخیز ایریل.</td>
</tr>
<tr>
<td>3-8</td>
<td>تنش سانگینی حوزه آبخیز ایریل.</td>
</tr>
<tr>
<td>3-9</td>
<td>تنش وقوع‌زا زمان شناسی حوزه آبخیز ایریل.</td>
</tr>
<tr>
<td>3-10</td>
<td>تنش پوشش اراضی حوزه آبخیز ایریل.</td>
</tr>
<tr>
<td>3-11</td>
<td>تنش پوشش اراضی حوزه آبخیز ایریل.</td>
</tr>
<tr>
<td>3-12</td>
<td>تنش پوشش اراضی حوزه آبخیز ایریل.</td>
</tr>
<tr>
<td>3-13</td>
<td>نمودار راداری میزان تغییر در حوزه آبخیز ایریل.</td>
</tr>
<tr>
<td>3-14</td>
<td>دامنه تغییر در میزان ارتفاع سطح اکوسیستم در زیرحوزه‌های آبخیز ایریل.</td>
</tr>
<tr>
<td>3-15</td>
<td>دامنه تغییر در میزان ارتفاع سطح اکوسیستم در زیرحوزه‌های آبخیز ایریل.</td>
</tr>
<tr>
<td>3-16</td>
<td>دامنه تغییر در میزان ارتفاع سطح اکوسیستم در زیرحوزه‌های آبخیز ایریل.</td>
</tr>
</tbody>
</table>
فصل اول
مقدمه و کلیات

1-1- مقدمه

إنسان ها همواره از اجزای مهم اکوسیستم بوته اند و سیستم‌های طبیعی که خود جزئی از آن‌ها هستند را تغییر می‌دهند.

(فلانری، ۱۹۹۴; ردمن، ۱۹۹۹; دیاموند، ۲۰۰۵) مفهوم سلامت اکوسیستم اولین بار به عنوان یک سیستم اکولوژیک سالم و غاری از علائم تنش (راپورت، ۱۹۸۹) و با توجه به

1. Flannery
2. Redman
3. Rapport
4. Bohm
حصول سلامت اکوسیستمی در نظر گرفته می‌شود و با این هدف طراحی اولیه برای همکاران می‌باشد. برای موفقیت در مدیریت ماحیطزیستی با این هدف گسترده‌تری از طراحی اکوسیستم‌های سالم و لحاظ مجموعه‌ای از عوامل مؤثر در تولید طیف وسیعی از خدمات انسانی با ماحیطزیستی طبیعی خودکافی نشده است. ارزیابی سلامت اکوسیستم روش‌های مهندسی ماحیط ول جوامع انسانی را به‌طور یکپارچه مورد ارزیابی قرار می‌دهد و باکر راه‌راه‌ی با خاصیت ایندیس قابلیت و مطلب فرآهم می‌شود (لو و هماون، 2013). در این راستا ارزیابی سلامت اکوسیستم با کاربردی های متنوع (جرگل، مرتب و کشاورزی) می‌تواند زمینه ارزیابی توان و نیز اولویت‌بندی برنامه‌های مدیریت و احیاء اکوسیستم‌های طبیعی را فراهم نماید.

1-2- کلیات

1-2-1- بیان مسأله

امروزه با افزایش آلودگی و تاثیرات ماحیطزیستی، ارزیابی وضعیت سلامت اکوسیستمی جهانی، ارزیابی وضعیت سلامت اکوسیستمی منطقه، بسیار مورد توجه است و به یک شاخص مهم توصیه‌ای پایدار منطقه‌ای تبدیل شده است. مفهوم سلامت اکوسیستمی اولین بار به‌عنوان یک سیستم اکولوژیک سالم و عاری از علائم تنش، و دارای ثبات و پایداری، تعریف می‌شود (زایروپت، 1999؛ رابورت، 2003).

1. Ding
2. Fan
3. Li
4. Xu
5. Suo
6. Costanza
7. Lu
1989)، و با توسه محیط‌پزیست، مفهوم سلامت اکوستیست به یک مفهوم جامع از اکوژویی، اقتصاد و جمعیت بسط داده شده است (دينگ و همکاران، 2008).

توانایی حفظ سازماندهی و عملکرد در طول زمان در مواضع با فشارهای خارجی \(\text{یک دارچینی‌بی‌خود با منظور توسهٔ یک‌پارچه} \) برای ارزیابی سلامت را سلامت اکوستیستی گویند (کاستانزا، 1992). بر اساس مطالعه کاستانزا سلامت اکوستیستی متون با ترکیب سه مشخصه اکوستیستی، توان، سازماندهی و انعطاف‌پذیری با یک ارزیابی جامع تعریف شود (لی و همکاران، 2012). سلامت اکوستیستی یک ادغام سازماندهی شده عمد برای حفاظت و تقویت کیفیت محیط‌پزیست و رفاه انسان‌ها است.

با توجه به اهمیت خصوصی و تهیه‌داری سلامت اکوستیستی یک مفهوم اساسی برای توسه‌راه‌کارهای جدید ارائه‌یابی و مدیریت منابع محیط‌پزیستی است. سلامت اکوستیستی روزگاری به‌عنوان یک تکنولوژی و راه حل دقیق برای انجام کارها است (فان و لی، 2003). با این حال، با توجه به یک که‌ی یک اکوستیستی، یک تا کردن شاخص‌های محیط‌پزیستی مناسب برای ارزیابی گرای سلامت اکوستیستی به‌عنوان مثال فلاندنی (1994) استدلال می‌کند که بومیان اصلی استرالیا باعث انقراض بسیاری از گونه‌های علفخواران بزرگ و چاپ‌گیری‌نگی آنها در بسیاری از مناطق شدند (کاستانزا، 2012). در ارائه‌یابی توان اکوژویی و وضعیت سلامت اکوستیستی داده‌های ماهواره‌ای با پوشش دادن سطحی و سیمای سرزمین، دقیق مکانی و تکراها زمین مناسب، امکان تهیه نقشه‌های کاربری و پوشش زمین مناسب بمنظور پایش و برناوری سیمای سرزمین را در بسیاری از مناطق فراهم اورده‌اند. از سوی دیگر ابتدای و توسه سنجش‌های این‌ها به‌عنوان نمایه‌های کمی سیمای سرزمین و امکان محاسبه آن‌ها از نقشه‌های کاربری و پوشش حاصل از داده‌های ماهواره‌ای، تحولی شگرف در این زمینه ایجاد کرده است (هرولد و همکاران، 2005). سنجش‌های سیمای سرزمین در اواخر دهه 1980 میلادی بر اساس نظریه تئوری اطلاعات ارتقاء شد (هرولد و همکاران، 2005). این سنجش‌ها را می‌توان به دو دسته مختلف تقسیم نمود: دسته‌ای از سنجش‌ها، ترکیب سیمای سرزمین که با اگر توصیفی از سیمای سرزمین هستند (مانند نوع و تعداد تکه‌های موجود در ظهور سیمای سرزمین) و دسته دیگری از سنجش‌ها، شکل سیمای سرزمین یا چیدمان فضایی که‌ها را نسبت به یکدیگر تحلیل می‌نمایند و در واقع نظم فضایی سیمای سرزمین را در نظر می‌گیرند (مانند شاخص شکل سیمای سرزمین و

1. Organization
2. Vigor
3. Resilience
4. Herold
5. Information Theory
6. Landscape Composition Metrics
7. Configuration Landscape Metric
میانگین فاصله از تندیکتراشگی نکته همسایه. سنجش‌های سیمای سرزنم در سه سطح، شامل کل سیمای سرزنم، طبقات کاربری و پوشش سرزنم و لگدی کل اندازه‌گیری هستند (آلبرتی و همکاران، 2001). مطالعات نشان می‌دهند که سنجش‌های سیمای سرزنم به دلیل قابلیت اندازه‌گیری کمی، آسان بودن محاسبه آنها و همچنین عدم نیاز به زمان زیاد برای اندازه‌گیری، شاخص‌های خوبی برای پیش‌بینی و سنجش سیستم‌های سرزنم هستند (سالمان‌مهاشی، 1386؛ آذری دهکردی و همکاران، 1388). سه‌وچهارم اندازه‌گیری سنجش‌های سیمای سرزنم با استفاده از تصاویر ماهواره‌ای و سامانه‌های اطلاعات جغرافیایی و نیز رابطه آنها با کارکرد بیوم سرزنم‌ها از ویژگی‌هایی با ارزش آنها است، از اینرو با مطالعه و شناخت تغییر آنها در واکنش به توسعه مورد نظر، می‌توان برآوردهایی از نظر تغییرات عملکرد بیوم سرزنم‌ها به عمل آورد (سالمان‌مهاشی، 1386).

با توجه به افزایش روست‌آفزون تخریب‌های محیط‌زیستی و لزوم توجه به رویکردهای جدید برای ارزیابی و پایش وضعیت اکوسیستم‌ها، ارزیابی سلامت اکوسیستم به عنوان ابزار مؤثر جهت تیم‌سازی سیستم‌های اکوژوئیک مطرح گردیده است. به منظور تبیین وضعیت سلامت اکوسیستم‌ها نیاز به شاخص‌های نمایه‌هایی است که با کمک آنها بتوان کار ارزیابی را انجام داد. در این خصوص نمایه‌های مناسب گسترش یافته که برخی از آنها بر روی گونه‌های شاخص تمرکز دارند (عرفانی و دانه‌کار، 1392). در حالی‌که از اینرو، مجموعه شاخص‌های باید نشان دهنده اطلاعات کلیدی در سازمان‌دهی اکوسیستم و عملکرد و برای هدف از این ارزیابی‌ها خاص باشد. در این راستا، اصولی شامل:

- ارزیابی منسجم و یکپارچه سلامت اکوسیستم
- بیان تخریب یک اکوسیستم
- ارزیابی عملکرد و سازمان‌دهی یک اکوسیستم
- نمایش پایداری اکوسیستم‌های انسان همراه
- هدف از مدیریت منابع طبیعی و اکوسیستم‌ها، ممکن است برای انتخاب شاخص‌های کلیدی استفاده شود (آب و همکاران، 1392).

در این راستا ارزیابی سلامت اکوسیستم با کاربری‌های منتوگو (جنگل، مرتع و کشاورزی) می‌تواند زمینه ارزیابی توان و نیز اولویت‌بندی برنامه‌های مدیریت و احیا اکوسیستم‌های طبیعی را فراهم نماید.

1. Alberti
۱-۲-2- اکولوژی سیماهای سرزمین

اکولوژی سیماهای سرزمین، مطالعه و استفاده از اطلاعات مروریت به الگوها و فرآیندهای اکولوژی و چگونگی تداخل آنها با شکل زمین در مقياسهای مختلف است. الزامات کلیدی برای تحلیل مؤقتی آمیز شامل تعیین محدوده منطقه مورد مطالعه، حد تفکیک، اجزای مورد توصیف و اندازه و سرعت تغییر در سیماهای سرزمین است. هر کدام از این عوامل در ارتباط با هدف تحلیل و ساختمانهای سیماهای سرزمین قرار می‌گیرند. با این حال، از آن‌جا که هر ناحیه، معیارهای جزئیه‌ای جداگانه از محیط اطرافش نیست، در تحلیل نمای الگوهای با مقیاس‌های بزرگ‌تر و کوچک‌تر از منطقه‌ای نادیده گرفته. هدف اصلی تحلیل‌های اکولوژیکی، دست‌انداز این مطلب است که اکوپیستم‌چگونه عمل می‌کند و چگونه پویایی تغییرات در زمان، حال و آینده بر اثر می‌گذرد. به همین دلیل با پدیده‌های مختلف مشکل را با دقت شناخت. برای تعیین کیفیت سیمای سرزمین، نیاز به شاخه‌هایی ایجاد، با روش‌های توصیفی یا مدلسازی‌های نیازهای می‌توان سیمای سرزمین را از نظر اکوپیستیکی تحلیل کرد. برای استفاده از مصدرهای راهنما، نیاز به اطلاعاتی است که بستر لازم آن با استفاده از روش‌های توصیفی امکان‌پذیر می‌گردد (بل، ۱۳۸۲).

۱-۲-۱- سنجش‌های سیماهای سرزمین

سازمان‌دهی سیمای سرزمین و ترکیب آن در بعد مکان و زمان به‌طور منظم در حال توسعه و تغییر وابسته به این تحولات مربوط به تعامل پیچیده محیط طبیعی و فعالیت‌های انسانی است که تجربه آن باعث تغییر در پایگاه مولفه‌های محیطی می‌شود. بصرف شاخص‌های سیمای سرزمین شده است (ایکسوا، ۱۹۹۰؛ تاکووا، و همکاران، ۲۰۰۲). شاخص‌های زیادی بین ساختار سیمای سرزمین، ساختار کاربری اراضی و تغییرات سیماهای سرزمین، تغییرات کاربری اراضی وجود دارد (آسالوا، و همکاران، ۲۰۰۶). سیمای سرزمین چی‌دنیا است که در آن ترکیبی از اکوپیستم‌های محلی یا کاربردی هر سرزمین در یک منطقه و در یک فرم مشابهی تکرار شده‌اند (آیان، و همکاران، ۲۰۰۲). در واقع سیماهای سرزمین، سطحی از زمین است که لکه‌های مختلفی را در بر دارد و با عنوان‌های چیدمانی از لکه‌ها، یا چیدمان مؤلفه‌های سیمای سرزمین، نامیده می‌شود (مکگاریگال، و همکاران، ۲۰۰۲).

References:
1. Xiao
2. Tlapakova
3. Walker
4. Amsalu
5. Apan
6. Mosas of patches
7. Mosaics of landscape elements
8. McGarigal
در سال‌های اخیر، تغییرات تغییرات اکوسیستمی کاربری اراضی ناشی از جنگل‌زدایی و انتقال کشاورزی به اطراف منابع آب موجب ایجاد بحران جدی شده است (این ۱ و همکاران، ۲۰۱۲؛ وود و هندلی، ۲۰۰۱). فعالیت‌های اقتصادی و انسانی در طول عمده در مقياس سیمای سرزمین صورت می‌گیرد و سیمای سرزمین به‌عنوان مقياس مکانی مناسب برای مطالعه بر روی تغییرات زیست محیطی در تنهای فعالیت‌های انسانی می‌باشد. تمامی فعالیت‌های انسانی در طیعت در نهایت منجر به تغییرات مکانی کاربری‌های اراضی می‌شود (ماسووتیا و همکاران، ۲۰۰۶ و همکاران، ۲۰۰۲). بنا براین سیمای سرزمین بایستی از کاربری اراضی انسانی در گذشته را در اختیار می‌گذارد و به‌عنوان قابلیت زندگی و پیوند کاربری اراضی پایدار به‌کار گرفته می‌شود (ایکسیو و زانگ، ۱۹۹۸). تغییر کاربری و پوشش توسط جنگل‌فرآیند مکانی شامل تفکیک و یا تکثیف شدگی سواحل‌شکاف، شکاف، قطع‌شکاف و پراکندگی، بنظیر، ساندگی و در برخی موارد به هم آمیختگی رخ می‌دهد (کاش و همکاران، ۲۰۱۲) که بیش از اصلی برای مباحثات کمی کردن سطح سیمای سرزمین است (آهرن و آندر، ۲۰۰۶). تکثیف شکافی یکی از مهم‌ترین فرآیندهای موجود در سیمای سرزمین برای نشان دادن تغییرات انسانی در طیع در ایجاد اختلال در سطح سازمان‌دهی و عملکرد سیمای سرزمین است (آهرن و آندر، ۲۰۰۲). در فرآیند تکثیف شکافی سیمای سرزمین به‌کار گرفته می‌شود به این رو اگاه از انواع پوشش سطح زمین و فعالیت‌های انسانی در پبخش‌های مختلف و یا نوع کاربری زمین به‌عنوان داده‌های پایه در تحلیل خصوصیات مکانی-زمانی سیمای سرزمین از اهمیت ویژه‌ای برخوردار است (کرمی، ۱۵ و همکاران، ۲۰۱۲؛ آلوانبورپوس و همکاران، ۲۰۱۷؛ ماتوس و همکاران، ۲۰۱۷). همچنین تحلیل خصوصیات مکانی و سازمان‌دهی لغات با تکثیف زمانی دیدگاه‌های تحلیلی سیمای سرزمین در تفسیر و مدل‌سازی تکثیرات مکانی-زمانی کاربری اراضی و درک ارتباط فاکتورهای محیطی و انسانی در تصمیم‌گیری ضروری است (این همان طول و ویژگی، ۲۰۱۲؛ هرزاک و لاس، ۲۰۱۶؛ لین و همکاران، ۲۰۱۲).

1. Linh
2. Wood & Handley
3. Matsushita
4. Xiao & Zhong
5. Fragmentation
6. Perforation
7. Incision
8. Dissection
9. Dissipation
10. Shrinkage
11. Attrition
12. Coalescence
13. Ghosh
14. Ahern & Andre
15. Karami
16. Alerano-Rivas
17. Matos
18. Herzog & Lausch
سنجه‌های سیمای سرزمینی، که برای کمی کردن خصوصیات مکانی لکه‌ها، کلاس‌های کاربری اراضی و چیدمان‌های

کل سیمای سرزمین به کار می‌رود، روی مناسب‌تر برای مقایسه وضعیت سیمای سرزمین‌های مختلف هستند و نیز به عنوان

شاخص‌های توصیه‌ای برای نگهداری گوشه‌های طبقه‌بندی شده به کار می‌رود (مک‌گارگال و همکاران، 2002).

به‌طور معمول سنجه‌های سیمای سرزمین در سه سطح لکه، برای ویژگی‌های مکانی و یافته لکه‌های منفرد، کلاس ۲ برای

مجموعه لکه‌های مربوط به طبقه‌ای خاص و سیما، برای پرای ویژگی‌های لکه‌ها و طبقات در کل محدوده تعریف و محاسبه

می‌شوند. این سنجه‌ها می‌توانند مناسب برای مقایسه سازوی‌های متفاوت سیمای سرزمین، با شناخت تغییرات وضعیت سیمای

سرزمین در طی زمان باشد. سنجه‌ها ازار مناسی برای طراحی و یافتن ارتباط دقیق بین سازمان‌دهی و عملکرد کاربری‌های

مختلف سیمای سرزمین هستند (بیونیگالا و همکاران، 2006).

از ایزه‌های محاسبه سنجه‌های سیمای سرزمین می‌توان به نرم‌افزارهای Patch Analyst و Fragstats اشاره نمود.

اما استفاده از نرم‌افزار به‌دلیل قابلیت بیشتر و محاسبه تعداد بیشتر از سنجه‌های سیمای سرزمین معمولی

است (مک‌گارگال و همکاران، 2009؛ مک‌گارگال و همکاران، 200۲). روشه تجزیه و تحلیل سنجه‌های سیمای سرزمین در

مقايسه با دیگر روشه‌ها به‌منظور تفسیر سازمان‌دهی مکانی لکه‌ها در مقایسه‌های مختلف و در زمان‌های مختلف از آمیت

بیشتری بروخوردار است. موضوع کمی کردن الگوی پراکنش لکه‌های کاربری و تجزیه و تحلیل‌های مکانی مربوط به آن

برای دکتر تغییر و تحولات سیمای سرزمین در آینده و نیز ارتباط آن با فرآیندهای تولید، تشکیل و یا کنترل روغن‌های می‌تواند

راهنمای باشد (بیانو و همکاران، 20۱۵).

2-۱ سوال‌های پژوهش

۱. آیا امکان تغییر سلامت اکوسیستم جنگلی منطقه ایریل با استفاده از شاخص‌های توان، سازماندهی و

انعطاف‌پذیری وجود دارد؟

۲. کدام یک از نور و حوزه‌های منطقه مورد مطالعه از نظر سلامت اکوسیستم وضعیت بهتری دارد؟

۳. کدام یک از شاخص‌های مورد استفاده توصیف بهتری از سلامت اکوسیستم منطقه ایریل (با کاربری جنگل، مرتع و

کشاورزی) ارائه می‌دهد؟

1. Landscape Metric
2. Patch
3. Class
4. Landscape
5. Botequila
6. Yuan
1. امکان تهیه سلامت اکوسیستم جنگلی منطقه مورد مطالعه بر اساس ساختارهای توان، سازماندهی و انعطاف‌پذیری وجود دارد.

2. جوزه‌های دارای پوشش جنگلی در منطقه‌ای ایریل از درجه سلامت اکوسیستمی بالاتری برخوردار هستند.

3. شاخص توان توصیف پهن‌تری از سلامت اکوسیستم ارائه می‌دهد.

1-4 - فرضیه‌های پژوهش

در این پژوهش فرضیه‌های زیر ارائه می‌شود:

1. امکان تهیه سلامت اکوسیستم جنگلی منطقه مورد مطالعه با استفاده از شاخص‌های توان، سازمان‌دهی و انعطاف‌پذیری وجود دارد.

2. جوزه‌های دارای پوشش جنگلی در منطقه‌ای ایریل از درجه سلامت اکوسیستمی بالاتری برخوردار هستند.

3. شاخص توان توصیف پهن‌تری از سلامت اکوسیستم ارائه می‌دهد.

1-5 - هدف پژوهش

هدف از تحقیق حاضر موارد زیر می‌باشد:

1. تعمیم ارزیابی سلامت اکوسیستم در زیر حوزه‌های منطقه ایریل

2. تعمیم ارزیابی سلامت اکوسیستم در زیر حوزه‌های منطقه ایریل براساس سلامت اکوسیستم

3. شاخص‌های مؤثر در تیم سلامت اکوسیستم منطقه ایریل

1-6 - ضرورت و اهمیت پژوهش

همان‌طور که برای بشر، سلامتی مفهومی است که برای شرایط کل بدن به گزارنده، سلامت اکوسیستم نیز به شرایط کل اکوسیستم برمی‌گردد و به‌همین دلیل مطالعه و توصیف اکوسیستم در زیر حوزه‌های منطقه ایریل از توجه می‌باشد. سلامت اکوسیستمی این موضوع را در جنگل اکوسیستم انتقال اندام‌های مهیا کرده و به جامعه انسانی این اکوسیستم در حوزه‌های بزرگ از این‌طور که در حوزه‌های اقتصادی و اجتماعی به نفع جامعه انسانی این اکوسیستم ضروری است.

خدمات اکوسیستم به‌طور کلی به چهار دسته تقسیم می‌شوند: تأمین، تنظیم، حمایت و خدمات فنی (کاستانزا و همکاران، 1997) تأمین خدمات منک‌بری‌های اکوسیستم مطلوب و توابلی عرضه خدمات، اکثر اکوسیستم ناسالم باشد مختل خواهد شد، برای مثال از طریق تغییرات (ورم و همکاران، 2000؛ بالاورنا و همکاران، 2006).

جهت ارزیابی و ضرورت سلامت اکوسیستم از نمایشگر و شاخص‌های استفاده می‌شود که با توجه به میزان مطالعه متفاوت‌تر. سلامت و پایداری اکوسیستم یکی از بخش‌های مهم در مباحث مربوط به مهیاپذیری اکوسیستم است و باعث شاخص مهمی در توجه به‌این مدیر محسوب می‌شود. بسیاری از اکوسیستم‌ها در مناطق مختلف جهان و در میزان‌های مختلف، مورد تنش‌های گوناگونی قرار می‌گیرند و کارایی و خدمات آن‌ها کاهش یافته ایست. به‌همین دلیل، مباحث مربوط به ارزیابی سلامت

1. Worm
2. Balvarena
اکوستیسم‌ها اهمیت زیادی پیدا کرده‌اند. روش‌های مختلف برای ارزیابی سلامت اکوستیسم وجود دارد که روش‌های مبتنی بر سیستم شاخص‌های مهم‌ترین آنها هستند و سلامت اکوستیسم را بر مبنای شاخص‌های مختلف اکوژولوژیک، شاخص‌های سلامت (VOR) شامل: عملکرد، سازمان‌دهی و برگشت‌پذیری و اجتماعی-اقتصادی ارزیابی می‌کنند. امروزه به‌منظور استفاده به شاخص‌های مختلف از روش‌ها و فناوری‌های جدید پهری‌های گیرند که سیستم‌های اطلاعات مکانی و سنجش‌های جزئی مورد توجه‌ترین آنها می‌باشند.

فعالیت‌های انسانی موجب گردیده است که توانایی اکوستیسم‌ها جهانی در تولید‌آبادی آینده تواناده‌ها داشته باشد. رهیافت‌های اکوژولوژیک انسان رو به افزایش است و از طرفی اکوژولوژیک زمین از سال 1987 فراورده و افزایش گونه‌های گیاهی و جانوری بخشی از پدیده طبیعی تکامل است، اما تعداد گونه‌های ناپایدار شدن در سال دهه‌های 1800 افزایش چشمگیری داشته است و به‌طور مستقیم ارتباط با رشد جمعیت و اثرات فعالیت‌های انسان بر محیط زیست دارد.

گونه‌ها در حفرات اطراف لست فرم‌رود/1400 درصد کل گونه‌ها بوده که بر این اساس تقریباً 2/19 درصد حیوانات و 9/20 درصد گیاهان در طبقه تهیه شدید قرار دارد که به‌طور مستقیم به از دست دادن زیستگاه تا سطح خُبیث افزایش تکه شدن اکوژولوژی از طریق استفاده بیش از حد از مواد شیمیایی، تکنیک‌های کشاورزی فشرده، شکار و آشفتگی‌های انسانی ارتباط دارند.

ایده طراحی و مدیریت اکوستیسم، بر اساس درک خصوصیات فرآیندهای طبیعی و آشفتگی‌ها برای احداث جنگل‌ها مدیریت مناطق حفاظت‌شده تعیین شده است (بل. 1382). از آنجا که اعمال سری اکوژولوژیک موجب تغییر می‌شود، لازم است تا قبل از هر اقدامی، جهت و خصوصیت‌های نیازمندی صحیح شود تا این اطمینان به دست آید که شرایط دلخواه اکوژولوژی حفظ شده باشد و وجود می‌آید. پردازش‌های مکانی و قطعات پایه همه تحلیل خصوصیات سیمانی سرزمین‌ها می‌تواند به عنوان واحدی مدیریت این مورد استفاده قرار گیرد. شیوه‌ها و روش‌های متفاوتی برای تحلیل اکوژولوژی فراهم‌کنندکه می‌توانند به عنوان‌هایی برای طراحی مدیریت اکوژولوژی موجود و اجرا، نوآوری تخریب شده بکار روند. دسترسی کامل به توان اکوژولوژی سرزمین بدن عمده خصوصیات منظر و پیان به‌صورت آن غير محتمل است. مطلوبیت‌های راه بارای حفظ باره محصولات و خدمات منابع طبیعی، خصوص‌یکپارچه و پهنه‌های از سیستم‌های اکوژولوژی است که آنها را تولید می‌کنند، که در این راستا تغییر سلامت اکوستیسم و توان اکوژولوژی آن از بیش‌تردم‌ها اساس است.
فصل دوم
پیشینه پژوهش

سلامت اکوستیسم یک الگوی سازماندهی شده عمدی برای حفاظت و تقویت کیفیت محیط زیست و رفاه خود ما است. بنابراین حفظ و تکثیر سلامت اکوستیسم بسیار مهم است و یک مفهوم اساسی برای توسعه راهکارهای جدید برای ارزیابی و مدیریت منابع زیست محیطی است (سو و همکاران، 2008). از این رو مطالعات متعددی در ارزیابی سلامت اکوستیسم و ارتباط آن با کاربردی و کمی کردن سیمان سرزمین در کشور و خارج از آن انجام گرفته است. با توجه به اهمیت مور مطالعات انجام شده در زمینه پژوهش حاضر چهت آشنایی و درک بیشتر و دستیابی به روشی کاربردی در این فصل برخی از مطالعات انجام شده بررسی می‌گردد.
تحقیقات بسیاری در خصوص تعیین و ارزیابی سیستم اکوسیستمی انجام شده است. در زیر به نمونه‌هایی از موارد مربوط اشاره شده است.

1- مطالعات خارج از کشور

راپورت و همکاران (1988) در مطالعه مروری خود ارزیابی سیستم اکوسیستمی در رابطه با جویزه سیستم زیست محیطی، اقتصادی و انسانی نیاز به یکپارچه‌سازی ارزیابی انسانی با فرازیکی ای بررسی نمودند. در این پژوهش با بیان ارتباط بین فعالیت‌های انسانی، منطقه‌ای و تغییرات زیست محیطی جهانی، کاهش خدمات زیست محیطی و پیامدهای خراب سیستم انسان، فرصت‌های اقتصادی و جوامع انسانی در ایجاد پیشرفت است. افتخارات درک ما از این بر هم کنش‌ها به همکاری فعال در بین محیط‌زیست، علوم اجتماعی و سیاست‌بندی در این پژوهش محیط‌زیست نقش اساسی و کاتانیوزی دارند.

2- مطالعات داخل کشور

زکاریا و همکاران (1485) با مطالعه برگزاری زیر اشکوب به بررسی تغییر در ترکیب گونه‌ها و فراوانی در سه نوع جنگل یعنی جنگل کهنسال، جنگل 5 و 10 ساله بی‌همتا بادی در حالی که تعداد گونه‌های فرعی یا کاتی، که بسیاری از آنها متعلق به راستی‌های خو Arizona و حشره‌های خوانان بودند، در جنگل بی‌همتا بادی در حالی که افزایش یافته بودند. در مقابل گونه‌های داخلی جنگل، به خصوص حشره‌های خواری در جنگل بی‌همتا بادی شدید کاهش یافته بود. آنها به این ترتیب رسیدند که گونه‌های انعطاف‌پذیرتر و آسیب‌پذیرتر با توجه به فعالیت‌های بی‌همتا بادی مناسب به عنوان شاخص سیستم اکوسیستمی جنگل مورد استفاده قرار گرفتند.

مونزور اریکسون و همکاران (1407) با پژوهش در زمینه ایجاد ارتباط میان شاخص‌های سیستم اکوسیستمی و مدیریت مشترک شاخص سیستم اکوسیستمی جامع، یک چارچوب نوید دهده برای ارزیابی نتایج فن‌آر توانی مشترک با استفاده از شاخص‌های محیط‌زیستی، اجتماعی و تعاملی برای نظارت بر طول زمان یا مورد مطالعه قرار دادن. در نهایت بر اساس تجربه کاری خود هر دوی دایره‌ای بود، یک چهارم به بینی گروه تحقیقاتی در شمال آزی و ایالات متحده، برای نشن دادن یک

انتخاب شاخص از طریق ثابت کردن یک فنآر مناسب بر نیازهای زیست‌گاهی طراحی کردن.

دیگر همکاران (1408) به مطالعه شاخص بوسند گیاهی شریف منظر، تشخیص تغییر با استفاده از سنجش از و

برداختند. عوامل ارزیابی جامع با ادغام اقتصاد اجتماعی و داده‌های جمعیتی، و برخی از مفاهیم سیمای سرزمین

GIS

1. Zakaria
2. Muñoz-Erickson
می‌خواهد بود سو و همکاران (2008)، در مطالعه‌ی خود، ارزیابی سلامت اکوسیستم جویه‌رودخانه جنگه‌ا1 در فلات هوانگ‌ئو را مورد بررسی قرار دادند. تخریب بوش می‌باشد در صف مچود، جنگه‌ریزی می‌باشد، حریق بسیاری، بی‌رویه، بایان زایی، فرسایش، خاک و هدرفت آب از مشکلات اصلی برای حفظ سلامت اکوسیستم هستند. این سه مشکل بر هم اثر کنار هستند و سلامت اکوسیستم جویه‌رودخانه جنگه‌ا را تحت تأثیر قرار می‌دهند. ارائه نتایج این ارائه نشان داد که یک روش مناسب ارزیابی سلامت اکوسیستم برای سنجیدن وضعیت سلامت رکود جویه‌رودخانه جنگه‌ا در مناطق با تربوپرهای متفاوت بود. در نتیجه یک میت با مکانیزم تغییر اهمیت می‌باور به تغییر مناسب و استراتژی مدیریت منابع بود.

کاسانیا (2012)، با بررسی سلامت اکوسیستم و محیطبستگی می‌باور به تغییر مناسب و استراتژی مدیریت منابع بود.

کاسانیا (2012)، با هدف ارزیابی عملی اصلاح شده و تجدید‌سازی سلامت در یک مدل سه بعدی از توان، سازمان‌دهی و انعطاف‌پذیری در سیستم‌های فلاته جنگه‌ا- توان در چین به مطالعه پرداختند. مدل مفهومی با استفاده از داده‌های یک مطالعه موردی در مرحله‌ی شهرستانی فلات جنگه‌ا- توان یکی از بی‌رویه مهم مراحل جهانی که به شدت توزیع عناصر و طبیعی تخریب شده بود، نشان داده شد. سیاست‌های سلامت مرتع در چهار قطعه‌ی مربوط در سطوح مختلف تخریب با استفاده از روش اصلاح شده در نامه‌های گری VOR محاسبه‌شده. نتیجه این نشان داد که هدایل آشفته‌پذیر قطعه مورد نظر به سایر قطعه‌ها نسبتاً سالم بود. علاوه بر این شاخص‌های سلامت ارائه شده در سه بعد چارچوب توان، سازمان‌دهی و انعطاف‌پذیری به شیوه‌ی سازگار در سازگاری چهار قطعه در امتیاز آشفته‌پذیر شیب کاهش یافته‌اند.

لو و همکاران (2015)، در پژوهش خود سلامت اکوسیستم به سمت پایداری را مورد مطالعه قرار دادند، و معیار و اصول اصلی برای انتخاب شاخص، طبقه‌بندی شاخص‌ها برای انواع مختلف اکوسیستم، مناسب‌ترین شاخص‌های برای اندازه‌گیری پایداری اکوسیستم و روش‌های مختلف برای ارزیابی سلامت اکوسیستم را ارائه دادند. محور، پایداری و انعطاف‌پذیری

1- Jinghe
2- Huangtu
به عنوان عوامل حیاتی برای سلامت اکوسیستم و ازبینی آن در نظر گرفته شد. ارائه تناوب ایجاد نشان داد که شناخت محیط‌زیست با ابعاد اجتماعی، اقتصادی، بیوفیزیکی، زیستی و سیاست‌های عمومی که هنوز هم جالش اصلی در این زمینه، و ابداع استراتژی‌های عملی برای رسیدن و حفظ سلامت اکوسیستم یک چالش کلیدی در آینده است.

ترومبور و همکاران (2015) در مطالعه مورور خود به تصرف سلامت جنگل شامل ادغام قواعد و مقياس اکوسیستم از شرایط جنگل و عملکرد اجرا در سراسر طیف سیعی از مقیاس‌های مکان‌برداخته. اگرچه جنگل‌های بومی به برخی از سطوح آشکاری‌ها تا پایان این جبهه است، همین‌جا جنگل‌ها اکنون با تنش طولانی در قابل بی‌بین آب و هوای آلودگی هوا و آفات مهار جریان هستند. تشخیص چگونگی تشکیل سیر جنگل را تحت تأثیر فاکتور ده و یک چالش بزرگ علمی است که نیاز به میسیونهای در حال توسعه برای ارزيابی سلامت جنگل جهانی است.

چن و همکاران (2016) در مطالعه خود به ارزيابی کمی سلامت اکوسیستم در ناحیه کارست در جنوب چین با استفاده از ارائه یک مکانیزم مبتنی بر GIS پرداختند. این تحقیق در منطقه هواچیانگ در استان گوئیزو به عنوان یک مطالعه موردی انجام شد. مجموعه‌ای از شاخص‌های سلامت زمین شناسی، زیست‌محیطی و اجتماعی و اقتصادی بر اساس تصاویر سنجش از دور با استفاده از داده‌های نظرت میدانی، هیدرولوژیکی و هوافناظه تهیه شد. این مطالعه نشان داد که تشخیص مکانی بیابان‌زایی در محیط زیست 50 میلی‌متر است. با استفاده از تکنولوژی چاقو‌سایه مکانی بر اساس داده‌های بومی، پوپولاسیون مکانی و مکانی سلامت اکوسیستم در مدت زمان 10 ساله دبیبی شد. نتایج تجزیه و تحلیل نشان داد که سلامت اکوسیستم در هواچیانگ به صورت منطقه‌ای متغیر است و در طول زمان به طور کلی بهبود یافته است. نسبت مناطق سالم از 37/3 درصد در سال 2000 به 28/3 درصد در سال 2010 افزایش یافته است. با این حال، مناطق ناسالم تا سال 2010 37/7 درصد از کل مساحت را تشکیل می‌دهند.

این مطالعه با استفاده از یک چارچوب فشار- حال (PSR) یک مجموعه‌ای از شاخص‌های جامع جمله جنبه‌های طبیعی، اجتماعی و اقتصادی را برای ارزیابی سلامت اکوسیستم شهرستان بواتو، استان چینگهیا، چن مورد مطالعه قرار دادند و تصویر ندست TM و داده‌های اجتماعی- اقتصادی، و سنجش از دور (RS) و سیستم اطلاعات جغرافیایی (GIS) برای پردازش داده‌های تصویر مورد استفاده قرار گرفت. نتایج نشان داد که شرایط سلامت

1. Trumbore
2. Karst
3. Huajiang
4. Guizhou
5. Liu & Hao
6. Yuanzhou
7. Loess Plateau
8. Ningxia
اکوسیستم‌های شهری یکی از شهرهای شهرستان یوژ و توانسته است سطح متوسط بوده و سه شهر در سطح سالم بوده و تنها دو شهر در سطح ناسالم قرار دارند.

زاهدگی و همکاران (2017) (1) عوامل مؤثر بر ارزیابی سلامت اکوسیستم، اکوسیستم سالمی در اثر افزایش و اثرات مختلف انسانی تجسم نمودند. تجزیه و تحلیل آماری بر اساس تحقیقات قبلی برای تعيین شاخص‌های ارزیابی سلامت اکوسیستم (EHA) (2) در سطح متوسط و سطح سالم ارزیابی گردید. برای رده سوم، از اکوسیستم‌های سالمی استفاده نمودند. جامعیت، متوقف‌گردی بلوک‌ها و اثرات خاص انسانی اکوسیستم به کار گرفته شدند. برای ایجاد یک چارچوب ارزیابی سلامت اکوسیستم (EHA) (3) تا 2005 به طور چشمگیری تغییرات سلامت اکوسیستم را در طول سال‌های اخیر مورد بررسی قرار دادند.

نتایج نشان داد در منطقه قرن میان مدت سالمی اکوسیستم در شاخص‌های گروه‌های ساختار- اعمال‌گری، تولید، ترکیب و توزیع یکسانی، خاک، کشت و سایر محیط‌های تولیدی با تغییرات در منطقه قرن میان مدت سالمی اکوسیستم در شاخص‌های گروه‌های ساختار- اعمال‌گری، تولید، ترکیب و توزیع یکسانی، خاک، کشت و سایر محیط‌های تولیدی با تغییرات در منطقه قرن میان مدت سالمی اکوسیستم در شاخص‌های گروه‌های ساختار- اعمال‌گری، تولید، ترکیب و توزیع یکسانی، خاک، کشت و سایر محیط‌های تولیدی با تغییرات در منطقه قرن میان مدت سالمی اکوسیستم در شاخص‌های گروه‌های ساختار- اعمال‌گری، تولید، ترکیب و توزیع یکسانی، خاک، کشت و سایر محیط‌های تولیدی با تغییرات در منطقه قرن میان مدت سالمی اکوسیستم در شاخص‌های گروه‌های ساختار- اعمال‌گری، تولید، ترکیب و توزیع یکسانی، خاک، کشت و سایر محیط‌های تولیدی با تغییرات در منطقه قرن میان مدت سالمی اکوسیستم در شاخص‌های گروه‌های ساختار- اعمال‌گری، تولید، ترکیب و توزیع یکسانی، خاک، کشت و سایر محیط‌های تولیدی با تغییرات در منطقه قرن میان مدت سالمی اکوسیستم در شاخص‌های گروه‌های ساختار- اعمال‌گری، تولید، ترکیب و توزیع یکسانی، خاک، کشت و سایر محیط‌های تولیدی با تغییرات در منطقه قرن میان مدت سالمی اکوسیستم در شاخص‌های گروه‌های ساختار- اعمال‌گری، تولید، ترکیب و توزیع یکسانی، خاک، کشت و سایر محیط‌های تولیدی با تغییرات در منطقه قرن میان مدت سالمی اکوسیستم در شاخص‌های گروه‌های ساختار- اعمال‌گری، تولید، ترکیب و توزیع یکسانی، خاک، کشت و سایر محیط‌های تولیدی با تغییرات در منطقه C. Zhang
2. Ecosystem Health Assessment
3. Zhejiang
باانی آکتر و شهیطاوا (1393) در مطالعه به موری خود موفقیت ارزیابی سلامت اکوسیستم‌های شهری برای مدریت شده در شاهرود که در مناطق مختلف چین قرار داشته و شامل یکن، شانگهای، گوانگژو، یانتانگ، زی، آن، کینگداو و غیره را بررسی نمودند. نتایج حاصل از این تحقیق نشان داد که به منظور اجرای مؤثرات از ارتباط سلامت اکوسیستم شهری در مدریت عمل شهری، لازم است رابطه بین وضعیت سلامت اکوسیستم شهری بر اساس ویژگی‌های متابولیسم داخلی و عملکرد خارجی اکوسیستم شهری مشخص شود. 11 شاخص برای توصیف عملکرد اکوسیستم شهری از جنبه‌های شرایط منابع، تبدیل اجتماعی، توزیع اقتصادی، و ظرفیت زیست‌محتی انتخاب شد. آنالیز ارتباط بین وضعیت سلامت اکوسیستم شهری بر اساس شاخص از دید جریان‌های ماده و انرژی و وضعیت اکوسیستم بر اساس 11 شاخص برای یافتن رابطه بین بنیان بیوفیزیکی داخلی و عملکرد خارجی اکوسیستم شهری به کار برد. شد اساس منابع و سطح ارتباط در این تحقیق دهده این است که

1. Bentic Opportunistic Polychaete and Amphipda
با تکیه بر شاخص‌های مکان‌نماد حاصل از فناوری سنجش از دور و سامانه‌های اطلاعات جغرافیایی پرداخته است. نتایج تحقیق نشان می‌دهد که از میان شاخص‌های سنجش از دوری ارزیابی سلامت و پایداری اکوسیستم‌ها، نقش‌های گیاهی به‌طور تأثیر زمانی مناسب و شاخص‌های گیاهی مانند LAI و NDVI از این نویز و پشت‌ریزی‌های دیگر سنجش‌های غیر سنجش‌های از دوری (مانند پرآورد فشار) تحقیق، به کارگیری متریک‌های منظر و ترکیبی، همچنین تلفیق شاخص‌های غیر سنجش از دوری (مانند پرآورد فشار...
محیط‌زیستی در مقایسه با طرفیت برد منطقه) با شاخص‌های عنوان شده را جهت برآورد دقیق‌تر سلامت اکوسیستم پیشنهاد می‌نماید.

صفایی و همکاران (۱۳۹۵) به ارزیابی شاخص‌های سلامت مرتع و جنگل در اکوسیستم‌های طبیعی شهرستان فردیون شهر استان اصفهان پرداختند. این مطالعه با هدف تعیین سه ویژگی اکوسیستم شامل سلامت موجودات زنده، توانایی ویژه‌های زیستی و پیشینه ویژه‌های آماری از سایت مرتع این اکوسیستم‌ها با استفاده از آزمون من- وین‌س تی تی که در شرایط وارونه‌ای به‌وجود آمده، می‌تواند آماری از این مفهوم به شکل مدلی کیفی وسیر بیان و در دو منطقه مرتع اکوژیکی و منطقه ارزیابی اجرا گردد.

۲- یکشنبه نوروز در زمینه‌گویی کاربری اراضی و سنجش‌های سرمای سرزمان

در زمینه‌پایش و بررسی تغییرات سیمای سرزمان و کمی کردن آن مطالعات متعددی در ایران و خارج از کشور انجام شده که در اکثر موارد سهم فعالیت‌های انسانی در ایجاد تغییرات پوشش و تخریب محیط‌زیست بیشتر از فراوانی‌های طبیعی مورد تأکید بوده است.

۲-۰-۳-۰- مطالعات خارج از کشور

از جمله مطالعات انجام شده در زمینه‌گویی کاربری اراضی و کمی سازی سبای سرزمان در خارج از کشور مطالعه هرزاق و لاس (۲۰۰۱) است. آن‌ها از سنجش‌های سرمای سرزمان برای پایش تغییرات سبای سرزمان در منطقه‌ای به وسعت ۷۰۰ کیلومتری در شرق آلمان استفاده کرده‌اند. در این مطالعه سنجش‌های سرمای سرزمان برای کل منطقه در سطح لکه، کلاس و سبای سرزمان محاسبه شد و تناوب آن‌ها نشان داد که لکه‌های کاربری از نوع کمی برخورد پایه و به سمت تدریگی شدن هر کدام سبای سرزمان پیش میرود.

هروله و همکاران (۲۰۰۱)، به برداشتن تصاویر ماهواره‌ای و استخراج سنجش‌های سرمای سرزمان در منطقه سانتا باربارا اول برداشته و از سنجش‌های مساوات لکه، شاخص بزرگ‌ترین لکه و تراکم لکه برای تحلیل تغییرات کاربری استفاده نمودند.

1. Santa Barbara
2. Patch Area (PA)
3. Largest Patch Index (LPI)
4. Patch Density (PD)
سريع، جنگل‌های آمازون را در راندومیاً برپس ویژه ترمیم و به این ترتیب رسیدن که در صورت ادامه این روند تا سال ۲۰۰۵
و سپس با استفاده از چشمه‌بری از جنگل‌تابو خواهد شد.

همچنین، ونگ (۲۰۰۷)، تغییرات الگوی سیمای سرزمینی در پایه به توسعه شهری و ایالات متحده با استفاده از
سنجش‌های مبنایان اندازه‌گیری‌ها، تراکم لکه، شاخص یکنواختی شانون و درصد سیمای سرزمین برپس نمود.

در مطالعه‌ای، کاشفن و همکاران (۲۰۰۸)، به تبعین خصوصیات ساختار سیمای سرزمینی در سه منطقه از ایالات
متحده پرداختند. آنها در سطح کلاس از ۴۴ جزء مستقل و در سطح سیما از ۱۷ جزء مستقل استفاده کردند و با استفاده از
نمای‌های PCA و انجام شی، نمودن که ترکیب از سنجش‌های سیمای سرزمینی دارای توصیف متوازن برگرد در
سطح کلاس و سیما از خصوصیات سیمای سرزمینی بوده و اغلب اطلاعات مشابهی را ارائه می‌دهند.

همچنین، اسپینال و هیل (۲۰۰۸)، به بررسی تغییرات کاربردی و مدیریت انسان در جنگل آمازون برداختند. این در
بخشی از تحقیقات تکه‌کشی‌سنجش‌گی که در تبیین تغییر کاربردی و عبور شهر از وسط جنگل را با انواع سنجش‌های سیمای
سرزمین به‌صورت گرافیکی مورد برپس قرار دادند. نتایج آن‌ها نشان داد که کاهش متوسط اندازه لکه، کاهش طول کاره
کل جنگل و افزایش فصله‌ی بین لکه‌های جنگل، در اثر تخریب جنگل و تغییر کاربردی بوده است.

شی و همکاران (۲۰۰۸)، با تأکید بر ضرورت کم‌سازی الگوی سیمای سرزمینی و تغییرات آن برای پایش و ارزیابی
نتایج اکولوژیکی تغییر کاربردی و دخالت‌های انسانی، برای سال‌های ۱۹۹۰ و ۲۰۰۰ سنجش‌های تراکم لکه، میانگین اندازه
لکه، میانگین وزنه مساحت بعد به چین خوردگی لکه، میانگین فاصله نزدیک‌ترین همسایه، شاخص پراکندگی مجاورت،
شاخص سرایت، شاخص تووع شانون و شاخص یکنواختی شانون را برای جویه‌های هایهٔ چین به‌دست آوردهند. نتایج آن‌ها

1. De Barros
2. Shape Index
3. Rondonia
4. Weng
5. Mean Patch Size
6. Shannon’s Evenness Index (SHEI)
7. Percentage of Landscape (PLAND)
8. Cushman
9. Principle Components Analysis (PCA)
10. Aspinall & Hill
11. Shi
12. Area-Weighted Mean Fractal Dimension Index (FRAC_AM)
13. Mean Nearest Neighbor (MNN)
14. Interspersion Juxtaposition Index (IJI)
15. Contagion Index (CONTIG)
16. Shannon’s Diversity Index (SHDI)
17. Haihe
تشان دهنده کاهش عفونت‌های منطقه، پراکندگی لکه‌ها و تغییر شکل پیچیده در سازمان‌دهی سیما بهدلیل به‌هم‌پرانی است.

در تحلیل تغییر کاربری و اثرات اکولوژیکی آن در وویان بهینه چین با استفاده از تکنیک سنجش از دور و ترمافاز تحلیل Fragstats مکانی، سیمی کابا و لی (2011) سنجش‌های اکولوژیکی را در دو سطح سیما و کلاس برای دوره‌های ۱۹۹۴-۱۹۸۷ و ۲۰۰۶-۱۹۹۴ به دست آورده‌اند. در سطح کلاس ۵ سنجش (تعداد لکه‌ها ناکام، شاخص بزرگترین لکه، شاخص تنواع شانون، شاخص تنواع سیمسون، شاخص سرایت و میانگین بعد چین خوردگی) را با در نظر گرفتن هدف مطالعه و شناخت همبستگی بین سنجش‌های اکولوژیکی سطح سیما نیز کردن که در دوره ۱۹۹۴-۱۹۸۷ جداسازی و در دوره ۲۰۰۶-۱۹۹۴ سه‌تایی برده است.

راماچاندران و همکاران (۲۰۱۲)، تغییر کاربری در هنگ‌را ناشی از شهرسازی غیر اصوله دانسته و از سنجش از دور و سنجش‌های مکانی برای تحلیل تغییر کاربری در ۴ دوره زمانی ۱۹۷۳، ۱۹۸۹، ۱۹۹۹ و ۲۰۰۹ با ۲ کیلومتر بالا از مرز شهر استفاده کرده‌اند. آنها با تفسیرنگی منطقه در ۴ گروه و معادله ۱۱ سنجش سیمات سرمین هنگ‌را لکه‌ها نتیجه رساندند که رشد شهرونه در طی این ۴ دوره اکنون واژه بوده و تحلیل سنجش‌ها نشان دهنده رشد اینو گروه شهر با شکلی ساده در مرکز شهر و رشد پراکندگی با شکلی پیچیده در اطراف شهر از سال ۲۰۰۹ بوده است.

تایکو و همکاران (۲۰۱۲)، سنجش‌های سیمات سرمین را ابزار برای ارزیابی سازمان‌دهی سیمات سرمین دانسته و برای سال‌های ۱۸۲۵ و ۱۹۶۸ در هسته‌ای سنجش‌های سیمات سرمین هنگ‌را میانگین نمودند. تحلیل نتایج آنها نشان دهنده ادعای روند استفاده از سرمین برای کشاورزی در دو مدت بوده و ارزیابی شاخص‌ها کافی تعداد لکه و افزایش مساحت لکه الگوی سیمات سرمین را نشان می‌دهد.

کانگ و همکاران (۲۰۱۲)، بعد از محاسبه سنجش‌های شاخص تنواع شانون، چیبرگ '۱، شاخص یک‌واختی شانون، درصد سیما، تراکم جاش '۰، تراکم لکه و میانگین اندامه لکه در سال‌های ۱۸۸۸، ۱۹۶۱، ۱۹۶۹ و ۲۰۰۲ در اورایکی '۱، زاین به

1. Wuhan
2. Simbay Kabba & Li
3. Number of Patches (NP)
4. Patch Cohesion Index (COHESION)
5. Simpson’s Diversity Index (SIDI)
6. Mean Fractal Dimension Index (FRAC_MN)
7. Ramachandra
8. Hustopece
9. Kang
10. Dominance Index
11. Edge Density (ED)
12. Oguraite
این نتیجه رسیدنده که ت نوع در سیمای سرزمین کاهش یافته و نواحی شهری، علیزار، شالیزار و مرتع در داخل لکه‌های بزرگ متمرکز شده‌اند و چکششگی مربوط به عوارض آبی بوده است.

کرمی و همکاران (1402). کمیسیون سازمان‌دهی و الگوی کاربری اراضی را در منطقه روستای زاغرس انجام دادند و در مجموع 2783 لکه کاربری اراضی را ثبت کردن که بیشترین لکه‌ها مربوط به کاربری کشاورزی بود. این‌ها با بررسی الگوی کاربری منطقه بیان کردن که تخریب اراضی طبیعی مانند جنگل و مرتع بايد کاهش یابد.

2-۳-۲ مطالعات داخل کشور

بمنظور بررسی روند تغییرات سیمای سرزمین در جوزه آبیزی نا واقع در حدوده استان‌های مازندران، گلستان و سمنان، طالبی امیری و همکاران (۱۳۸۸)، با تجزیه و تحلیل سنجش‌های سیمای سرزمین، تبیین گسترده زیمن‌های جنگلی و کشاورزی در منطقه به پوشه مربوطه را در طی سال‌های ۱۳۸۱-۱۳۸۷ گزارش نمودند. آن‌ها همچنین افزایش تعداد لکه‌ها و کاهش میانگین مساحت دو شاخه مهم تجزیه پوشه و روند تخریب و تجزیه سیمای سرزمین را به صورت افزایشی گزارش نمودند.

کرمی و فقهی (۱۳۹۰)، سازمان‌دهی اولیه سیمای سرزمین و روند تغییرات آن در آینده و همچنین اهمیت ناحیه رویشی زاغرس، در استان کهگیلویه و بویراحمد را بررسی کردن که نتیجه حاصله نشان دهند، این بود که هر چه درصد و تراکم مناطق مسکونی در منطقه بیشتر تراکم لکه و سنجش شکل لکه‌ها افزایش و اندوزه لکه و اتصال و پیوستگی سیمای سرزمین هم کاهش می‌یابد.

در مطالعاتی در استان مازندران، پیرزایی و همکاران (۱۳۹۱)، پس از تهیه نقشه‌های پوشه سرزمین و استخراج سنجش‌ها در دو سطح کلاس و سیمای، از تحلیل interpreting مناسب در تحلیل تغییرات سیمای سرزمین، استفاده کردن و نتایج حاکی از افزایش مساحت در پوشه‌های مسکونی، کشاورزی، مرتع، جاده و افت شدید در جنگل‌های استان بوده است.

به‌همان‌طور و همکاران (۱۳۹۱)، کمیسیون الگوی مکانی و زمینی را برای درک اثرات اکولوژیکی و فرآیند تصمیم گیری مهم دانسته و برای شهر اصفهان در سال‌های ۱۹۹۰ و ۲۰۱۰ برای ۵ کلاس کاربری (شهری، کشاورزی، آب، اراضی گیر و توسعه ناپایه) سنجش‌های سیمای سرزمین شامل درصد سیما، تعداد لکه، شاخه بزرگ‌ترین لکه و سراپ‌ریز را با محاسبه نمودند. نتایج آن‌ها نشان دهنده افزایش اراضی شهری و کاهش اراضی بایر بوده است. Fragstats
آرخی و فتحیزاد (1393)، به منظور بررسی روند تغییرات سیمای سرزمین در جوهره دوبرج استان ایلام از سنجه‌های مساحت طبقه، شاخه‌پوشگر گیاهان، تعداد لکه، میانگین اندازه لکه، تراکم لکه و تراکم حاشیه لکه استفاده کردن. آن‌ها برای آنالیز گسترش گیاهی سنگینه‌های متنوع الگوی چشم‌انداز در سطح کلاس را با استفاده از نرم‌افزار Fragsstats محاسبه کردند. نتایج بیان‌دهنده آن‌ها نشان داد که تعداد لکه‌ها و کاهش میانگین مساحت دو شاخه مهم تجزیه بوده و روند تخریب و تجزیه سیمای سرزمین به صورت افزایشی بوده است.

عسگران و همکاران (1394)، تأسیس شوراها را پس از پیدایش مهم‌های اقتصادی و اجتماعی دانسته که تأثیرات بسیار زیادی در عملکرد سامان‌های اکوژوئیکی دارند و در این راستا به بررسی الگوی رشد و توسعه شهر ساری و بخش‌هایی از پرورش آن پرداختند. آن‌ها در سال‌های 1371، 1377، 1381 و 1389، با کمی کردن سنگینه شاخه پرورش‌گیرین لکه، میان‌رژه‌های سنگینه شاخه پرورش‌گیرین لکه را برای آنالیز گیاهی با آنالیز گیاهی با استفاده از نرم‌افزار Fragstats محاسبه کردند. نتایج آن‌ها نشان داد که تعداد لکه‌ها و کاهش میانگین مساحت دو شاخه مهم تجزیه بوده و روند تخریب و تجزیه سیمای سرزمین به صورت افزایشی بوده است.

پژوهش‌های دژکام و همکاران (1394) نیز، با هدف ارزیابی روند تغییرات ترکیب و پیکردنی مؤلفه‌های سازماندهی سیمای سرزمین شهرستان رشت در سال‌های 1376، 1378 و 1390، سنگینه‌های تعداد لکه، تراکم لکه، شاخه‌پوشگر، شاخه تنومن شانزه، شاخه پیوندی، تراکم حاشیه و درصد پوشش سیمای سرزمین را در دو سطح سرزمین و کلاس‌های مباشته به‌کمک نرم‌افزار (افزار مقدار Euclidean Nearest Neighbor (ENN)، کاهش الگوی رشد درونی کاهش و در پی آن افزایش الگوی رشد برونی همراه بوده است.

تندروان زنگنه و همکاران (1394)، پایه تغییرات کاربری اراضی و الگوی سیمای سرزمین در حدوده تالاب چغاخور در استان چهارمحال و بختیاری در پی دوره شش ساله (2009-2013) را مورد مطالعه و بررسی قرار دادند. آن‌ها سنگینه‌های درصد سیمای، تعداد لکه، تراکم حاشیه و شاخه‌پوشگر گیاهی سنگینه‌های محاسبه نمودند و به این ترتیب Fragsstats را پرداختند که حدود 2/17 درصد از سطح تالاب کاهش یافته، در حالی که اراضی کشاورزی و سازه‌های انسان ساخت در دوره شش ساله افزایش یافته است.

1. Euclidean Nearest Neighbor Distance (ENN)
Abstract:
Assessing ecosystem health to monitor the degradation of natural resources and exploring the causes of degradation is considered as an effective step in management and utilization of ecosystems. Recently, the need to provide comprehensive indicators for assessing the current status of ecosystem and predicting future scenarios has become especially important. In this regard, the ecosystem health index is presented to evaluate ecosystem health. In this study, the ecosystem health index was calculated by considering vigor, organization and resilience criteria in sub-watersheds of Iril watershed in Ardebil province. The aim of this study was to evaluate the factors affecting the health of ecosystems comprehensively, considering three main landscape characteristics including: vigor, structure, and resilience in the Iril watershed, Ardebil province. In this regard, the values of vigor (NDVI, erosion and runoff), were quantified. The TerSet software was used to obtain the NDVI values through band combinations, and the EPM and SCS models were used to erosion and runoff estimation. The landscape structure (continuity, degree of division, patch density and density edge) and resilience (different landuse classes, the largest patch index and aggregation index) were quantified using the Fragstats Software. The results were compared using radar charts among different multidimensional components through sub-watershed of study area. The ecosystem health index was then evaluated using different weighting approaches. In the next step, different sub-watersheds were prioritized according to different weights to each criterion. According to the results of vigor component, the S8 and S1 sub-watersheds had the highest 0.89 and 0.13 scores, respectively. The S7, S2 and S3 sub-watersheds had a favorable condition in terms of structure, having 0.73, 0.63, and 0.63 scores, while the other sub-watersheds had not a good condition. The resilience index values of S1, S3 and S8 sub-watersheds are more than other parts of the study area. In summary, the results showed that the highest variability is related to resilience component over the study area. Based on the results, the average value of the vigor, structure, and resilience components were calculated to be 0.40, 0.55, and 0.55, respectively, and the S1 sub-watershed had the highest average value of calculation indices in the study area. The results also showed that the ecosystem health index varies in different weighting approaches in range of 0.32 to 0.79 in the studied sub-watersheds. Based on the equal weighting to the ecosystem health index, the S5 sub-watershed with the value of 0.34 had the lower health status and S1 sub-watershed with a value of 0.77 had the higher health status than the other sub-watersheds in the Irish watershed. The average value of the ecosystem health index over all sub-watersheds was 0.50, which is relatively undesirable according to the classifications of ecosystem health status. Considering the multidimensional nature of the ecosystem health index and taking into account all the factors affecting ecosystem restoration or destruction as well as economic and social characteristics, it can be a useful tool in prioritizing critical areas as an effective step in ecosystem management. The ecosystem health index indicates the combined effect of factors affecting ecosystem degradation and regeneration, which allows the prioritization and compilation of management decisions for different regions. In conclusion, the ecosystem health degree of the Iril watershed was assessed as undesirable (except the forested sub watershed according to the used indices).

Keywords: Ecosystem health, Vigor, Organization, Resilience, Landscape metrics
University of Mohaghegh Ardabili
Faculty of Agriculture and Natural Resources
Department of Natural Resources

Thesis submitted in partial fulfilment of the requirements for the degree of M.Sc. in Natural Resources Engineering - Silviculture and Forest Ecology

Title:
Evaluation of forest ecosystem health in the Iril Watershed, Ardabil Province

Supervisor:
Farshad Keivan Behjou (Ph.D)

Advisor:
Raoof Mostafazadeh (Ph.D)

By:
Aniss Jafari

September-2017