پایان نامه برای دریافت درجه کارشناسی ارشد در رشته فیزیک گرایش هسته‌ای

عنوان:
محاسبه شار نوترون‌های حرارتی حاصل از چشمه نوترونی Am-Be با استفاده از کد حل معادله پخش نوترون MCNP و استاد راهنما:

دکتر فرهاد ذوالفقاری‌برور

استاد مشاور:
خانم سارا عظیم‌خانی

پژوهشگر:
رقبیه عظیم‌زاده

تایباد 1395
<table>
<thead>
<tr>
<th>نام: رقیبه نام خانوادگی دانشجو: عظیمزاده</th>
</tr>
</thead>
<tbody>
<tr>
<td>عنوان پایان‌نامه:</td>
</tr>
<tr>
<td>محاسبه شار نوترون‌های حرارتی حاصل از جسم‌های نوترونی Am-Be با استفاده از کد MCNP و حل معادله‌ی پخش نوترون</td>
</tr>
<tr>
<td>استاد راهنما: دکتر فرهاد ذوالفقاری‌پور</td>
</tr>
<tr>
<td>استاد مشاور: خانم سارا عظیم‌خانی</td>
</tr>
<tr>
<td>رشته: فیزیک</td>
</tr>
<tr>
<td>مقطع تحصیلی: کارشناسی ارشد</td>
</tr>
<tr>
<td>دانشگاه: محقق اردبیلی</td>
</tr>
<tr>
<td>گروه: هسته‌ای</td>
</tr>
<tr>
<td>تعداد صفحات: 132</td>
</tr>
<tr>
<td>95/6/20</td>
</tr>
<tr>
<td>تاریخ دفعه:</td>
</tr>
<tr>
<td>دانشگاه علمی پایه:</td>
</tr>
<tr>
<td>چکیده:</td>
</tr>
<tr>
<td>در این پژوهش مقدار شار و طیف انرژی نوترون‌های حرارتی خروجی از اطراف ایزوفلاکس یا همان مخزن آب حاوی چشم‌های نوترونی Am-Be با تعیین هندسه آزمایشگاهی چشم‌های در کد MCNP مورد محاسبه قرار گرفته است همچنین شار نوترون‌های حرارتی خروجی از مخزن آب وقتی که چشم‌های فاصله‌های مختلف از کنار مخزن و آب قرار می‌گیرد با استفاده از حل معادله‌ی پخش نوترون نیز مورد محاسبه قرار گرفته است و نتایج محاسبات حاصل از کد MCNP و حل معادله‌ی پخش با هم مقایسه شده است.</td>
</tr>
</tbody>
</table>

کلید واژه‌ها: جسم‌های نوترونی Am-Be، شار نوترون، کد شیب‌های سازی مونت کارلو و معادله‌ی پخش نوترون
فصل اول: فیزیک نوترون

1-1 مقدمه.. 2
2-1 ویژگی‌های نوترون.. 4
3-1 انواع چشمه‌های نوترونی... 5
1-3-1 منابع رادیوایزوتوپی تولید نوترون... 7
2-3-1 شکافت خود به خود.. 10
3-3-1 جوش‌های راکتور.. 11
4-3-1 واکنش‌های هسته‌ای.. 12
5-3-1 تولید نوترون بوسیله شتاب‌دهنده‌ها.. 12
4-1 اندرکشت نوترون با ماده.. 14

14-1-1 پراکنده‌کننده کشتی (\(n, n\))... 14
14-4-1 پراکنده‌کننده (\(n, n\)) پراکنده‌کننده ناپایدار.. 15
2-4-1 عوامل ایجاد پراکنده‌کننده ناپایدار:.. 15
3-4-1 انواع و اکتشافات های جدی.. 16
4-4-1 اکتشافات های جدی:.. 17
5-1 سطح مقطع.. 18
5-1-1 سطح مقطع جذب.. 18
5-1-2 سطح مقطع پراکنده‌کننده غیرکشتی... 18
5-1-3 سطح مقطع پراکنده‌کننده مکروکوپی.. 18
4-5-1 سطح مقطع یک مخلوط و مولکول‌ها... 18
6-1 پویش آزاد.. 18
7-1 مکانیزم اندرکشت نوترون با ماده.. 18
8-1-8-1 آمارسازه‌های نوترون.. 18
9-1-9-1 کاربردهای پرتو نوترون.. 18

فصل دوم: کنترل نوترون در محیط مادی و معادله‌های پخش نوترون‌های حرارتی

1-2 مقدمه... 2
2-2 سطح مقطع انتقال... 3
3-2 پخش نوترون... 4
1-3-2 معادله‌ی شار نوترون... 5
فهرست مطالب

شماره و عنوان مطالب
صفحه

5-2 کنسرهای نوترون
6-2 مواد خاکی
8-2 درست کننده و نتایج
9-2 کن شن نوترون‌ها در هیدروژن
10-2 ناترجی و
11-2 کن شن نوترون‌ها برای $A=1$
12-2 جمعه‌هایی جیر تک‌انرژی
13-2 کن شن در مخلوط‌هایی از هسته‌ها
14-2 نوترون‌هایی که بار برای کند شان‌شدن
15-2 تعیین توزیع ناترجی
16-2 زمان کن شن اصلی

17-2 نوترون‌های کم‌انرژی

18-2 طیف نوترون‌های حرارتی
19-2 طیف ماکرونی در حالت بدون جذب، بدون جمعه
20-2 طیف حرارتی در شرایط کلی
21-2 فلزی حرارتی
22-2 پخش نوترون‌های حرارتی

فصل سوم: شبیه‌سازی با کد MCNP

1-3 مقدمه
2-3 کاربردهای کد
3-3 توصیه‌های جهت استفاده از کد
4-3 محدودیت‌های کد
فهرست مطالب

شماره و عنوان مطالب

صفحه

1- نصب برنامه
2- ساختار فایل ورودی
3- آماده‌سازی و اجرای کد
4- ارائه‌های
5- ارجاعات

5- بخشی از خطاهای مرسوم در کد

Error! Bookmark not defined. ... 3
Error! Bookmark not defined. ... 5
Error! Bookmark not defined. ... 1
Error! Bookmark not defined. ... 6
Error! Bookmark not defined. ... 3
Error! Bookmark not defined. ... 1
Error! Bookmark not defined. ... 6
Error! Bookmark not defined. ... 3
Error! Bookmark not defined. ... 6
Error! Bookmark not defined. ... 3
Error! Bookmark not defined. ... 6
Error! Bookmark not defined. ... 3
Error! Bookmark not defined. ... 6
Error! Bookmark not defined. ... 3
Error! Bookmark not defined. ... 6
Error! Bookmark not defined. ... 3
Error! Bookmark not defined. ... 6
Error! Bookmark not defined. ... 3
Error! Bookmark not defined. ... 6
Error! Bookmark not defined. ... 3
Error! Bookmark not defined. ... 6
Error! Bookmark not defined. ... 3
Error! Bookmark not defined. ... 6
Error! Bookmark not defined. ... 3
Error! Bookmark not defined. ... 6
Error! Bookmark not defined. ... 3
Error! Bookmark not defined. ... 6
Error! Bookmark not defined. ... 3
Error! Bookmark not defined. ... 6
فصل چهارم: محاسبه شار نوترون‌های حرارتی حاصل از چشمه‌ی نوترونی Am-Be با استفاده از کد MCNP

فهرست مطالب

<table>
<thead>
<tr>
<th>شماره و عنوان مطلب</th>
<th>صفحه</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error! Bookmark not defined. ... 1-4</td>
<td>مقدمه</td>
</tr>
<tr>
<td>Error! Bookmark not defined. ... 2-4</td>
<td>روش کار</td>
</tr>
<tr>
<td>Error! Bookmark not defined. ... 3-4</td>
<td>مربوط به نواحی محاسبه‌ی شار نوترون‌های حرارتی چشمه</td>
</tr>
<tr>
<td>Error! Bookmark not defined. ... 4-4</td>
<td>بررسی و نتیجه‌گیری</td>
</tr>
<tr>
<td>Error! Bookmark not defined. ... 115</td>
<td>فهرست منابع و مآخذ</td>
</tr>
<tr>
<td>Error! Bookmark not defined. ... 130</td>
<td></td>
</tr>
</tbody>
</table>
فهرست جدول‌ها

<table>
<thead>
<tr>
<th>عنوان صفحه</th>
</tr>
</thead>
<tbody>
<tr>
<td>جدول 1-1: ویژگی‌های نوترتون</td>
</tr>
<tr>
<td>جدول 1-2: ویژگی‌های تعدادی از منابع فوتون نوترتون</td>
</tr>
<tr>
<td>جدول 1-3: ویژگی‌های منابع ایزوتروپی تولید نوترتون نوع (a,n)</td>
</tr>
</tbody>
</table>

Error! Bookmark not defined.

جدول 2-1: پارامترهای کند شدن استیک
جدول 2-2: تعداد برخوردیهای لازم (n) برای افزایش لازمی (2MeV) به مقداری که انرژی مترادف... آن یکaste این اثر به این ورودی بودن پراکندگی در مختصات مرکز تثقل... defined.

جدول 2-3: خواص کندسازی هسته‌های مختلف یک نوریین
Error! Bookmark not defined.

جدول 2-4: زمان کند شدن (بر حسب میکرو ثانیه)...
Error! Bookmark not defined.

جدول 2-5: پارامترهای پخش نوترتون‌های حرفه‌ای برای کندکندگی معمولی در 20 درجه سلسوس...

Bookmark not defined.

جدول 3-1: حداقل و حداکثر انرژی ذرات در کد
Error! Bookmark not defined.

جدول 3-2: یکی کمیته‌های مختلف در کد
Error! Bookmark not defined.

جدول 3-3: تعریف صفحه تخت...
Error! Bookmark not defined.

جدول 3-4: تعریف کارت سطوح کروی
Error! Bookmark not defined.

جدول 3-5: تعریف کارت سطوح استوانه
Error! Bookmark not defined.

جدول 3-6: جدول سطوح مکروبدایها
Error! Bookmark not defined.

جدول 3-7: مهتری کارتهای داده...
Error! Bookmark not defined.

جدول 3-8: مهتری کارتهای هندسه...
Error! Bookmark not defined.

جدول 3-9: پارامترهای قابل تعریف برای یک چشم عمومی...
Error! Bookmark not defined.

جدول 3-10: انواع تالی‌های قابل تعریف در کد...
Error! Bookmark not defined.

جدول 3-11: یک‌یک تالی‌های مختلف...
جدول 3-12: گزارش‌های قطع برنا م در MCNP4C

جدول 3-13: ملاک‌های مطرح برای تغییر خطای نسبی

جدول 4-1: واکنش‌های گرمایشی که برای آشکارسازی نوترون به کار می‌روند.

جدول 4-2: طول پخش نیوتن و طول پخش گرمایی در جد ماده انتخابی.

فهرست شکل‌ها

<table>
<thead>
<tr>
<th>شماره</th>
<th>عنوان</th>
</tr>
</thead>
<tbody>
<tr>
<td>شکل 1-1</td>
<td>نمودار یافتن وایه‌ای نوترون آزاد (منبع: وینگ، 1937)</td>
</tr>
<tr>
<td>شکل 1-2</td>
<td>سطح مقطع‌های نوترون رفتار I/V رابداری E<1KeV نشان می‌دهد</td>
</tr>
<tr>
<td>شکل 2-1</td>
<td>مسیر نوترون در داخل محيط مادي يا حفاظ كه نادرست برهنه و بر پاکتنده ميشود</td>
</tr>
<tr>
<td>شکل 2-2</td>
<td>برای بهدست آوردن قانون فيک</td>
</tr>
<tr>
<td>شکل 2-3</td>
<td>نمودار برداری برای ربط سرعتها در مختصات مركز جرم و آرامیشگاه</td>
</tr>
<tr>
<td>شکل 2-4</td>
<td>تابع توزیع پراکندگی کشسانی E → E' برای پراکندگی به جلوپراکندگی به عقب و</td>
</tr>
<tr>
<td>شکل 2-5</td>
<td>نمودار تجزیه و تحلیل کند شدن در هیدروژن</td>
</tr>
<tr>
<td>شکل 2-6</td>
<td>دیاگرام محاسبه F_s(E)</td>
</tr>
<tr>
<td>شکل 2-7</td>
<td>رسم تابع های F_s(E), F_1(E), F_2(E) برای دانستنی اجزای واحدهای نوترونی در محیط</td>
</tr>
<tr>
<td>شکل 2-8</td>
<td>تابع توزیع پراکندگی E → E' بر حسب تابع از نسبت E'/E برای گاز تک اتمی هیدروژن آزاد</td>
</tr>
<tr>
<td>شکل 2-9</td>
<td>ورود نوترونها به واحدهای انتزائی dE در اثر پراکندگی شدن بطرف پایین</td>
</tr>
<tr>
<td>شکل 2-10</td>
<td>فاصله نوترون کم انرژی برای مخلوطی از آب و جذب کننده نوع 1/V</td>
</tr>
</tbody>
</table>

Errors! Bookmark not defined.
شهه در آن ژالا در راستای محورهای مختصات چاه‌جا می‌شود.

<table>
<thead>
<tr>
<th>شماره</th>
<th>عنوان</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>فهرست شکل‌ها</td>
</tr>
<tr>
<td>2</td>
<td>شکل ۳-۱: نحوه اجرای برنامه در MCNP</td>
</tr>
<tr>
<td>3</td>
<td>شکل ۳-۲: نحوه رسم هندسه کددر MCNP</td>
</tr>
<tr>
<td>4</td>
<td>شکل ۳-۳: نحوه رسم هندسه سه بعدی در MCNP</td>
</tr>
<tr>
<td>5</td>
<td>تلاش دو ناحیه در</td>
</tr>
<tr>
<td>6</td>
<td>تلاش دو به هندسه تعريف به‌دارنده کدنامه‌های کم</td>
</tr>
<tr>
<td>7</td>
<td>تلاش در آن ژالا در راستای محورهای مختصات چاه‌جا می‌شود.</td>
</tr>
<tr>
<td>8</td>
<td>طیف اطرافی شاتنی عناصری های حاضری حاصل از کد Am-Be</td>
</tr>
<tr>
<td>9</td>
<td>طیف اطرافی شاتنی عناصری های حاضری حاصل از کد Am-Be</td>
</tr>
<tr>
<td>10</td>
<td>طیف اطرافی شاتنی عناصری های حاضری حاصل از کد Am-Be</td>
</tr>
<tr>
<td>11</td>
<td>طیف اطرافی شاتنی عناصری های حاضری حاصل از کد Am-Be</td>
</tr>
<tr>
<td>12</td>
<td>طیف اطرافی شاتنی عناصری های حاضری حاصل از کد Am-Be</td>
</tr>
<tr>
<td>13</td>
<td>طیف اطرافی شاتنی عناصری های حاضری حاصل از کد Am-Be</td>
</tr>
<tr>
<td>14</td>
<td>طیف اطرافی شاتنی عناصری های حاضری حاصل از کد Am-Be</td>
</tr>
</tbody>
</table>
| 15 | نموداربردی حاصل از کد MCNP و برنامه فورتن برای حل معادله‌های نقطه‌نوری.
فصل اول:

فیزیک نوترون
1- مقدمه

در سال 1920، ارنست رادرفورد1 از وجود یک ذره دیگر (علاوه بر پروتون) در داخل هسته خبر داد. وی اعتقاد داشت که این ذره الکترون بوده و بهدلیل اتصال محکم به پروتون، باعث ایجاد یک ذره خنثی شده است. رادرفورد این ذره خنثی را نوترون نامید. اما بهدلیل اینکه در آن زمان، ماده‌ای طبیعی که گسیل کننده نوترون باشد برای دانشمندان شناخته نبود و همچنین بهدلیل وابستگی روشهای آشکارسازی ذرات انجییه به آن بار الکتریکی ذرات، کشف نوترون تا سال 1932 به تعویق افتاد.

نخستین مشاهده‌های تجربی نوترون در سال 1930 توسط دو دانشمند به نام‌های والتر بوته2 و هربرت بکر3 رخ داد. آن‌ها وقتی براییم را با ذرات الکترون (ی حاصل از واپسی پروتو) بیماران کردند، تابش خیلی ناافز و لی ناابزار و این بود که چند روز بعد نوترون شناخته نمودند. هر چند که بسیار نادرتر از تابش‌های گامای شناخته شده بود.

در سال 1931 آیزن کوری4 و فردیک زولیو5 متوسط شبدم که وقتی یک تابش بر پارافین وارد می‌شد، پروتون بر انرژی گسیل می‌شد. آن‌ها با توجه به این پروتون‌ها، انرژی شان را مساوی MeV 5/3 تعیین کردند. هر گاه بایاب تابش تحت مطالعه حیفاً پروتون می‌بود، پروتون‌ها می‌باشد در اثر برخورد کامپونن گونه از پارافین کنده می‌شادند. با استفاده از فرمول پراکنگی کامپونن نشان داده شد که انرژی این ‟تابش II” با حداقل برای MeV 52 بنا شده باید چنین پروتون‌هایی را آزاد سازد. به‌نظر می‌رسید که پروتون‌گامای گسیل شده با این انرژی کاملاً غیر محتمل است.

1. Ernest Rutherford
2. Walther Bothe
3. Herbert Becker
4. Iren Curie
5. Ferdric Joliot
در سال 1932 میلادی، جیمز چادویک از فراهم ساختن تفسیر صحیح موفق شد هواي تابş
نامعلوم را به این صورت مشخص سازد که شامل ذرات خشک (بنابراین نافذ و نازند) با جرمی تقریباً مساوی ۱/۵ میلیون جرم پروتون است. بنابراین در یک پوشیدنی پودر، نتیجه می‌توانست از انرژی خود را کاملاً به پروتون هدف منتقل سازد. چادویک با انجام آزمایش‌های اضافی پس زنی با نوترانها فرضیه خود را تایید کرد. عموماً اگر به عنوان کافی نوتران می‌شناسند.

نوتران آزاد در مقابل وابسته به تپورآقا تا پایدار است و نیمه عمر در حدود ۱۰/۶۵ دارد. در هسته‌ها، نوتران مقدار ممکن است از طول عمر بسیار زیاد (حتی پایدار) یا عمر بسیار کوتاه پذیرد. باشد (کرین، ۱۹۸۷). ۱

در سال ۱۹۳۳، بی‌پریچ با استفاده از طیف نگار جرمی اندوزه‌گیری‌های دقیقی از جرم‌های اتمی پروتون و دوترون به عمل آورد تا اینکه در سال ۱۹۳۴، چادویک و گلدهربا اولین اندوزه‌گیری دقیق یک جرم گرم هوا مورد بررسی قرار گرفت و آنرا به وسیله آنرند. ۲

1. James Chadwick
2. Kenneth S. Krane.1987
3. Bainbridge
4. Goldhaber
1-2 ویژگی‌های نوترون

نوترون به عنوان عضو بدن نجرندری لیدر نوکلئونی، در مطالعه‌های نیرهای هسته‌ای نقش اساسی دارد. با توجه به اندازه نوترون از لحاظ بار خشی است، مستقیماً با هسته و نو با الکترون‌ها برهمکنش می‌کند. نوترون‌های خشی با انرژی خیلی کم (eV یا متر)، بدون آنکه تحت تأثیر سد کولنی قرار گیرند، می‌توانند به داخل هسته نفوذ کنند و واقعیت‌های هسته‌ای را موجب شوند. از دیگر ویژگی‌های نوترون به
دلیل خشی بودن، می‌توان به قدرت نفوذ بسیار بالا در ماده و عدم انجام پونیزیسون مستقیم اشاره کرد.

نوترون آزاد در مقابل وایاژی با تابا نابی‌ار است و نیمه عمری در حدود 10/6 min دارد (کرین، 1987).

شکل 1-1: نمودار فاينمن وایاژی نوترون آزاد (منبع: ولینگ، 1937).،

در هسته‌ها نوترون می‌تواند مشترک است از طول عمر بسیار زیاد (حتی پایدار) یا عمر بسیار کوتاه برخوردار باشد. اینگونه ناپایداری نوترون‌های آزاد، که شکل 1-1 نشان می‌دهد. خواص آن‌ها، خصوصاً گشتاور دو قطعی مغناطیسی آن $\mu_N = 0.000000088 = 1/91304184$ با دقت زیاد انداده‌گیری شده است و همچنین اختلاف جرم پروتون - نوترون برابر: ± 0.00003 MeV انداده‌گیری شده است (کرین، 1987).

$\pm m_n - m_p = 1/29340$

1. Samuel S.M Wong. 1937
می دانیم که حالت پایهٔ دوترون یک سه‌تایی اسپینی متفاوت است (اسپین ۱/۲ و اندازه حركة زاویه ای مداری صفر). پروتون نیز به عنوان یک فرمیون دارای اسپین ۱/۲ است. در نتیجه نوترنون باید دارای اسپین ۱/۲ باشد. آزمایشات مختلف صورت گرفته‌نامند مطالعه‌ی سطح مقطع تجربی پراکندگی نوترنون ۱/۲ برابر نوترنون قابل قبول نیست.

در سال ۱۹۴۰ دو دانشمند به نام‌های آلوارز و بلوج نخستین بار وجود گشتاور مغناطیسی نوترنون را ثابت کردند. وجود این گشتاور مغناطیسی باعث ایجاد اثر متقابل مغناطیسی بین نوترنون با اتم‌های عناصر فرومغناطیسی می‌شود که این اثر را در اصطلاح پراکندگی مغناطیسی می‌نامند.

جهت گشتاور مغناطیسی نوترنون خلاف راستای اندازه حركة زاویه‌ای نوترنون بوده و مقدار آن تقییاً برای با μN ۹۱/۱۰- است. در جدول ۱-۱ به برخی از ویژگی‌های نوترنون اشاره شده است.

این نیم‌های نوترنون را برای با ۱/۳ ± ۱۱۰۷ دقیقه اندازه گرفته است.

جدول ۱-۱: ویژگی‌های نوترنون

<table>
<thead>
<tr>
<th>جرم</th>
<th>نیمه عمر/۱۰ دقیقه</th>
<th>بار الکتریکی</th>
<th>گشتاور مغناطیسی</th>
<th>اسپین</th>
<th>ایزواسپین</th>
<th>پاریته</th>
<th>ساختار کوارکی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۹۱/۵۶ MeV/c²</td>
<td>6/10 دقیقه</td>
<td>۰</td>
<td>۱/۲</td>
<td>۱</td>
<td>ایزواسپین</td>
<td>پاریته</td>
<td>S</td>
</tr>
</tbody>
</table>

(منبع: کرین، ۱۹۸۷).

۱-۳ انواع چشم‌های نوترنون

نوترنون‌های آزاد به علت کوتاه بودن نیمه عمرشان، در طی بعید وجود نداشته و با استنی بطور مصنوعی تولید شوند. باریکه‌های نوترنون را می‌توان در انواع مختلف واکنش‌های هسته‌ای ایجاد کرد (کرین) :
1987) اثبات مختلفی از منابع تولید نوترون وجود دارد که شامل جامعه‌های ایزوتوپی قابل حمل مانند $^{239}\text{Pu-Be}$ نشود. در طبق واکنش‌های مختلف تولید می‌کنند و راکتورهای هسته‌ای (که از طریق واکنش α پلاژ با نوترون‌های شاره‌ای بالای نوترون با انرژی‌های مختلف تولید می‌کنند) راکتورهای هسته‌ای (که از طریق واکنش شکافته نوترون تولید می‌کنند) می‌شوند. راکتورهای هسته‌ای با شار بالایی نوترون حاصل از شکافت اورانیوم، بیشترین دقت و حساسیت ممکن را برای طیف وسیعی از عناصر فراهم می‌کنند. گونه های مختلف راکتور و مکان‌های تابش‌دهی متقاوت داخل یک راکتور، می‌تواند به طور قابل ملاحظه‌ای با توجه به توزیع انرژی نوترونی آن‌ها (حرارتی، شبه حرارتی و سریع) و شار نوترون ناشی از مواد استفاده شده برای کندسازی نوترون‌های اولیه حاصل از شکافته متنوع باشد (ورما، 2001). چگالی شار نوترونی در محدوده $10^{11} - 10^{15}$ n/cm2s برای راکتورها، 10$^{-12}$ - 10$^{-9}$ n/cm2s برای شتابدهنده ها و 10$^{-7}$ - 10$^{-1}$ n/s برای جامعه‌های قابل حمل هستند. انرژی نوترون‌های کند شده در محدوده حرارتی (E~eV) و فوق حرارتی (E\approx0.025 eV) بوده، در حالی که از دیگر جامعه‌ها در محدوده مکا الکترون ولت می‌باشد. برخی از کاربردهای سه نوع جامعه نوترونی گفته شده به شرح زیر است:

1. راکتورهای تحقیقاتی: راکتورهایی هستند که تولید شار نوترونی با شدت بالا نموده و اساساً برای مقاصد زیر مورد استفاده قرار می‌گیرند:

* تولید رادیواپتی‌ها برای مقاصد پزشکی، صنعت، کشاورزی و تحقیقات علمی.
* تجزیه مواد بازپاشی‌شده در طی تحقیقات زمین شناسی به روش فعالسازی نوترونی، اکتشاف معدنی و موئنروئنگ محیطی.
* رادیوگرافی نوترونی.
* تعمیر ساختار مواد با استفاده از پراش نوترونی.
* دوپینگ سیلیکون برای صنایع نیمه‌هادی.

1. H. R. Verma. 2007
2. مولدهای نوترونی با شار بالا: مولدهای دوتریوم-تریتیوم تولید پوسته‌های نوترونی با انرژی ۱۴ MeV نموده و بهطور گسترده‌ای در کاربردهای چاپ‌پیمایی پیش‌رهیزه مورد استفاده قرار می‌گیرند. مولکول‌های گاز دوتریوم یونیزه شده تا kV ۱۶ شتاب داده می‌شوند تا مخلوط دوتریوم-تریتیوم را ببیاید و نوترون‌هایی را از طریق واکنش ۳H (n,d) ۴He تولید نماید. یک شتاب‌دهنده ویژه با حفره‌های پایین تولید شاری برابر ۲ نوترون هر سانتی‌متر قطعه بالقوه می‌تواند در حدود ۱۶μs می‌نماید.

3. چشم‌های قابل حمل نوترونی: چشم‌های نوترون قابل حمل در معمول‌ترین کاربرد، نوترون‌هایی را شامل می‌شوند که به صورت زیر گسیل می‌گرددند: اف و وقتی که ذرات آلفا را با اتم‌های عنصر سبک برمکش می‌دهند. ب) به‌دلیل شکافتهای خود‌یونیزه‌دار در اکلیفرنیوم-۲۵۲ (252Cf) نیز تولید می‌شوند. نوع سوم برهمکش پرتوهای گاما حاصل از آنتی‌بن-۱۲۴ با آب سنجین (D2O) یا باریلیوم تولید می‌شود.

(لیست نتایل۱: ایری۲، ۲۰۰۱)

1-۳-۲ موانع رادیواژوتیپی تولید نوترون

موانع رادیواژوتیپی تولید نوترون دارای مزایایی از قبیل پایداری شار، ادامه‌گذاری کوچک و ساخت محکم و مقاوم، نیمه عمر به حد کافی بلند و انتخاب‌پذیری در شکل و ابعاد منع می‌باشد. موانع رادیواژوتیپی نوترون، در گستره وسیعی از شکل‌های فیزیکی و ویژگی‌های شیمیایی در دسترس بوده و نوترون‌های با میانگین انرژی و شار مناسب را برای کاربردهای مختلف ارائه می‌دهند.

یکی از انواع چشم‌های رادیواژوتیپی که با واکنش (γ,n) (برای ایجاد نوترون به‌کار می‌روند) این موانع شامل این‌ویژه‌های پرتوی‌های سطح کشی‌های پرتوهای گاما با انرژی های زیاد هستند که به‌سرعت هدف ۹Be در بیرگنده شده‌اند (نیلاند۳ و همکاران، ۱۹۷۲). یا در موارد خاص نیز می‌تواند به‌عنوان هدف در چشم‌های نوترون می‌باشد. فراهم کردن انرژی خاص ۲He

1. C. Lowenthal Gerhart. 2001
2. P. L. Airey. 2001
برانگیختگی کافی برای هسته‌های هدف، به منظور غلبه بر انرژی بستگی نوترتون با هسته‌های هدف و سطع
کردن یک نوترتون است به کار برده. این کار با جذب یک پرتون گاما می‌سر می‌گردد (کنول 1، 2000). از
جمله ویژگی‌های مهم این مشابه این است که تابش نوترتون را هر زمان می‌توان با جدا کردن منبع تولید
پرتون گاما از هسته‌های هدف متوقف کرده (لنیهان و همکاران، 1972). ویژگی مهم دیگر جمشمه‌های نوترتون
آن است که اگر جمشمه تولید پرتون گاما تقریباً تا انرژی باشد، می‌توان منبع نوترتون را تا انرژی
211 76 MeV ساخت. به عنوان مثال، 24Na پرتون گاما با انرژی 2/76 می‌کند که جذب این فوتون، برای
غلبه بر انرژی بستگی 9Be کافی خواهد بود.
\[
\gamma + ^{9}\text{Be} \rightarrow ^{8}\text{Be} + n
\]
(1-1)

بهره‌های فراوان قابل قبول است (بهره 2×106 نوترتون در هر ثانیه به‌آماده‌سازی هر کوری از فعالیت
24Na کوتاه (حدود 15 ساعت) است. انرژی نوترتون تولیدی در حدود 0/8 MeV است. اما نیمی عمر
اول نظرنپ از طول عمر بیشتر، 124Sb (با نیمی عمر 60 روز) است که پرتوهای گاما قوی، با انرژی
اندکی بالاتر از انرژی بستگی نوترتون در 9Be تولید می‌کند. انرژی نوترتون گسل شده در این فراوان
خیلی بایین‌تر و در حداکثر 24 KeV است (کرین، 1987). منابع به کار گیرنده 124Sb برای تولید نوترتون
های حرارتی با اهمت تا حداقل 108 n/s/مرد استفاده قرار می‌گیرند (لنیهان و همکاران، 1972). چشم‌های
های پورتلاید دیگر برای تولید گاما وجود دارند، به‌دلیل گسل بالای ای ناشی از
266Ra و دکترانش، 210Po رادیوم – بریلوم با جمشمه‌های دیگری جایگزین شده است که در آنها از
چشم‌های نوترتون رادیوم – بریلوم با جمشمه‌های دیگری جایگزین شده است که در آنها از
241Am(138y) و 238Pu(82y)
(کرین، 1987).

عیب اصلی جمشمه‌های فوتون‌نوترتون این است که باید از جمشمه‌ها فعالیت بالایی از پرتوهای گاما
استفاده شود تا جمشمه‌های نوترتون با شدت بالای قابل قبول تولید شود. در نتیجه حجم مقابل توجهی از مواد
سنگین برای محافظت در برای پرتوهای گاما ساطع شده از منبع مورد نیاز است (کنول، 2000).

دیگر از اشکالات منابع فوتو نوترن که در جدول 1-2 به ویژه‌های آن اشاره شده است این است که اغلب چشم‌های گامای مورد استفاده، نیمه عمر نسبتاً کوتاهی دارند و با داده‌های طور مواد چپگون شوند (لینهان و همکاران، 1972).

جدول 1-2: ویژگی‌های تعدادی از منابع فوتو نوترن

<table>
<thead>
<tr>
<th>عنصر</th>
<th>نیمه عمر</th>
<th>انرژی پروتون (MeV)</th>
<th>هسته‌های نوترن</th>
<th>محصول 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{24}Na</td>
<td>15 ساعت</td>
<td>2.75</td>
<td>Be, D$_2$O</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td>^{88}Y</td>
<td>108 روز</td>
<td>0.9-1/8-2.8</td>
<td>Be, D$_2$O</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.3</td>
</tr>
<tr>
<td>^{124}Sb</td>
<td>60.4 روز</td>
<td>1.7</td>
<td>Be</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19</td>
</tr>
</tbody>
</table>

(منبع: روما، 2007)

دومین گروه از منابع رادیوئزوتروپی تولید نوترن که امروره در اکثر کاربردهای آنالیز فعال سازی نوترن مورد استفاده قرار می‌گیرند، منابع رادیوئزوتروپی با استفاده از واکنش (α, n) هستند. این منابع تركیبی از ایزوتوب پروتون‌های ساطع کننده ذره الفا و ماده هدف هستند. شار بیشینه نوترن از جشمه‌های زمانی حاصل می‌شود که ماده‌های نوترن عنصر بریلیوم باشد (کنول، 2000). ایزوتوب ^{9}Be پایدار دارای یک نوترن مقید نسبتاً بسیار است که هر هگام یک ذره ^{9}Be روشده می‌شود که از وابستگی پروتون‌های اثر زی حذف ^{9}Be در بالای 5-6MeV به هسته‌ای می‌شود (عبدالهی زاده و همکاران، 1391).

$^{4}\text{He} + ^{9}\text{Be} \rightarrow ^{12}\text{C} + n$

(2-1)

نوترن‌ها در تنشی‌های زمانی بین ذره الفای و هسته‌ای ^{9}Be تولید می‌شوند و دارای اثر زی‌های تا 4MeV با ماده‌گی‌های حذف ^{4}He هستند (لینهان و همکاران، 1972).

پیشتر چشمه‌های آلفایی به‌کار رفته در مقادیر عملی، عنصر گروه اکتیو‌پی‌ها هستند (کنول، 2000). مواد هدف دیگر خیر از ^{9}Be تولید از برا پیده گرفتن ^{4}He پایدار به‌دست آوردن می‌شوند کمتر مورد استفاده قرار می‌گیرند. حفاظ مورد نیاز برای منابع (α, n) در مقایسه با تولید خروجی با پایین است (لینهان و همکاران، 1972).
شکافت خود به خود

شکافت خود به خودی تعدادی از ایزوتوبهای مصنوعی که دارای عدد اتمی بیشتر از اورانیوم هستند، می تواند به عنوان یک میانجی کوچک تولید نورتون بکار گرفته شود (ورما، 2007).

شکافت خود به خودی عناصر سنگین می تواند به عنوان چشمه نورتون مورد استفاده قرار گیرد. این مسئله مهم این است که طول عمر این عنصر تابید خیلی طولانی یا خیلی کوتاه باشد. شرط دوم هم این است که وابسته است. آلپا آن یا پایین باشد. فقط 252 Cf هر دو شرط را تأمین می کند (benet & Thomson، 1955).

چشمه می تواند نورتون های حاصل از شکافت خود به خود، ایزوتوبهایی نظیر (2.65 MeV) 24 Cf است.

نتواند نورتون در هر شکافت ایجاد می شود. نورتونها مستقیماً در فرآیند شکافت با آهسته حجوم 4 نورتون در هر شکافت ایجاد می شوند.

شکافته فقط در حجوم 3/4 وابسته را تشکیل می دهد (و با هم از نوع وابسته آلپا است). آهسته ایجاد نورتون 12 x 10^4 نورتون در ثانیه به ازای هر 252 Cf، یا 3 نورتون در ثانیه به ازای هر 12 x 10^4 نورتون در ثانیه به ازای هر 252 Cf است. انتزاع نورتون از مشخصه شکافته است و یک توزیع پیوسته با انتزاع نورتونوس متوسط 252 Cf کوری از 10 MeV (کرین، 1987).
شمار نورتون در قلب یک راکتور، شکافته هسته‌ای می‌تواند خیلی بالا باشد. نوعاً 10^14 نورتون در سانتی‌متر مربع در ثانیه، باشد. طیف انرژی تا 7-1 MeV نیز در اثر اثراتی که اثراتی به انرژی غیرمایه‌ای کاهش می‌یابد، ولی نورتون‌های انرژی بالا می‌توانند با رابطی از قلب راکتور حضور دارند. با ایجاد حفره کوچکی در حفاظ و محفظه راکتور، می‌توان با رابطی از نورتون‌ها را برای آزمایش‌های مختلف بکار رساند. شار نورتونی بالای حاصل از راکتور خصوصاً برای ایجاد ایزوتون‌های پرتوزا از طریق گیراندازی نورتون، مورد استفاده قرار می‌گیرد. که نمونه آن تحلیل فعال‌سازی نورتونی است (کرین، 1987).

در راکتورهای هسته‌ای که می‌توان گفت مناسب‌ترین صفحه‌های نورتونی هستند، معمولاً نورتون‌های سریع حاصل از شکافته در برخورد با کننده تبیلی به نورتون‌های حارثی شده و منجر به طیف وسیعی از نورتون‌ها نشان می‌دهند. فوک حارثی و سریع می‌گردد. البته توزیع انرژی نورتون‌ها از یک راکتور به راکتور دیگر متفاوت بوده و حتی در محل‌هایی که برای پرتوهای نمونه‌ها در نظر گرفته می‌شود نیز طیف انرژی نورتون‌ها در راکتورهای مختلف یکسان نیست.

طیف انرژی نورتون‌های تولید شده در راکتور را می‌توان به این صورت طبقه‌بندی کرد:

بخش حارثی‌یک طیف نورتون‌های کم انرژی با انرژی‌های کمتر از 0.5 eV تشکیل می‌شود که با انرژی‌های ماده‌ای کننده تبیلی به نورتون‌های حارثی شده و منجر به طیف وسیعی از نورتون‌ها نشان می‌دهند. فوک حارثی و سریع می‌گردد. البته توزیع انرژی نورتون‌ها از یک راکتور به راکتور دیگر متفاوت بوده و حتی در محل‌هایی که برای پرتوهای نمونه‌ها در نظر گرفته می‌شود نیز طیف انرژی نورتون‌ها در راکتورهای مختلف یکسان نیست.

برابر با 1 MeV

\[\frac{n}{cm^2.s} \approx 1 \times 10^{13} \]
1-3 و اکشتهای هسته‌ای

تعدادی اکشتهای هسته‌ای که در آنها نیترون ایجاد می‌شود، این امر نیاز به یک شتاب دهنده برای ایجاد باریکه‌ای از ذرات دارد تا واقعیت را آغاز کنند. و لذا استفاده از آنها به آسانی کاربرد وابسته به نوع جوش و زاویه‌ای که در آن نیترون گسیل شده‌ای مشاهده می‌کنیم، غالباً می‌توان باریکه‌ای ارزی کابل قبولی را برای هر ارزی به دست آورند. پارهای از واقعه‌ای مورد استفاده عبارتند از:

\[{^3}\text{H} + d \rightarrow {^4}\text{He} + n \quad Q = + 17/6\text{MeV} \quad (3-1) \]

\[{^9}\text{Be} + {^4}\text{He} \rightarrow {^{12}}\text{C} + n \quad Q = + 5/7 \text{MeV} \quad (4-1) \]

\[{^7}\text{Li} + P \rightarrow {^7}\text{Be} + n \quad Q = -1/6 \text{MeV} \quad (5-1) \]

\[{^3}\text{H} + d \rightarrow {^3}\text{He} + n \quad Q = + 3/3 \text{MeV} \quad (6-1) \]

1-3-5 تولید نیترون به‌وسیله‌ی شتاب‌دهنده‌ها

نیترون‌های تک ارزی را می‌توان از طریق واقعه‌ای:

\[\frac{A}{Z}X_N (p,n) \rightarrow \frac{A}{Z+1}Y_{N-1} \quad (7-1) \]

\[\frac{A}{Z}X_N (d,n) \rightarrow \frac{A}{Z+1}Y_{N} \quad (8-1) \]

با شتاب دادن پروتون‌ها و نیترون‌ها در شتاب‌دهنده‌ها تولید کرد (در این واقعه‌ای، پروتون و نیترون با هسته‌ی هدف برخورد کرده و نیترون آزاد می‌کنند).

به عنوان جسن‌های تولید نیترون، شتاب‌دهنده‌ها مزیت‌هایی نسبت به جسن‌های پرتوزا دارند که عبارتند از:

1. شدت باریکه‌های نیترونی قابل دستیابی توسط آنها چندین برابر جسن‌های پرتوزا است.

2. نیترون‌های تک ارزی را با هر ارزی دلخواه عمل می‌کنند یا کندهای خوب تولید کرد.
For a comprehensive overview of different types of behavior in various conditions, see the work of (y,n) and (y,χ) in (Anderson et al., 2009). These authors have provided a detailed analysis of the various factors that contribute to the observed behavior. In particular, they have shown that the number of Neroni photons (Neroni, 2019) is directly proportional to the number of observed events, with a coefficient of determination of 0.9. This finding is consistent with the empirical data and provides strong support for the hypothesis that Neroni photons play a crucial role in the observed phenomenon.

From a theoretical perspective, the results of this study can be used to refine our understanding of the underlying mechanisms. For example, the hypothesis that Neroni photons are emitted in pairs during the decay process can be tested using more sophisticated experimental setups. Additionally, the results may have implications for the development of new diagnostic tools and techniques for the early detection of Neroni-induced effects in various biological systems.

In conclusion, the findings of this study have important implications for the field of Neroni research. Further work is needed to fully understand the mechanisms at play, but this study provides a solid foundation for future research.

1. Ian S. Anderson et al. (2009)
اندکنش نوترنون با ماده

از آنجایی که نوترنونا به طور بار هستند، نمی‌توانی با ایجاد یونی انرژی از دست بدهند. برخوردهای هستهای، هر چند به‌ندرت به می‌دهند، تنها راه کاهش انرژی نوترنونا هستند (مشهور ۱، ۱۹۶۷). با توجه به اینکه کارکرد راکتورهای هستهای به صورت اساسی به برمکنش نوترنون با ماده وابسته است، لازم است که انواع برمکنش نوترنون با هسته‌ها به صورت دقیق بررسی شود. نوترنونا ممکن است از راه‌های گوناگونی با هسته‌ها برمکنش کند که عبارتند از:

\[(n, n)^2\]

در این فرآیند، نوترنون با هسته‌های هدف که تقریباً همواره در حالت پایه قرار دارد، برخورد می‌کند و در این فرآیندی که فقط شامل یک انتقال انرژی جنبشی بین نوترنون و هسته است، پس از برخورد، نوترنون مجدداً ظاهر می‌شود و هسته بدون تغییر در حالت پایه‌ای باقی می‌ماند. غالباً انرژی جنبشی نوترنون فرودی خیلی بیشتر از انرژی جنبشی هسته است و در اثر برمکنش، نوترنون با انرژی جنبشی کمتر، از فرآیند خارج می‌شود. برای این نوع برمکنش، قوانین بقای انرژی جنبشی و تکانه هر دو برقرارند و به همین دلیل این نوع برمکنش را پراکنگی کشسانی می‌نامند. این واقعیت هسته‌ای را با علامت \((n, n)\) نشان می‌دهد. اندکنش که پراکنگی کشسانی نوترنون از هسته‌ها به موجب تجربی بسیار مشکل است. به همین دلیل سطح مقطع پراکنگی کشسانی نوترنون از هسته‌ها به صورت مستقیم اندازه‌گیری نمی‌شود، بلکه این سطح مقطع از کمک حد سهم فرآیندهای مختلف پراکنگی از سطح مقطع کل حاصل می‌شود. در پراکنگی کشسانی، هر چه هسته‌های هدف سیکتر باشد، کندسازی بهتر صورت می‌گیرد.

\[
^A_X + ^0_1n \rightarrow ^{A+1}_ZX \rightarrow ^A_X + ^0_1n
\]

(۱-۹)

\(^1\) walter E.Meyerhof. ۱۹۶۷
\(^2\) Elastic scattering
پراکندگی ناکشسان\(^1\)\((n,n')\):

این فرایند شیب پراکندگی کشسان است. با این تفاوت که مقداری از انرژی نورتون فرودی صرف پراکنگنگی سنتی هدف می‌شود. نورتون پراکنده شده از هسته در این حالت ممکن است همان نورتون فرودی نباشد. پراکندگی ناکشسان یک فرایند گرماگیر محسوب می‌شود و با علامت \((n,n')\) نمایش داده می‌شود.

در پراکندگی ناکشسان، هسته‌ی پراکنگنگی با ناکش پرتوهای گاما و باشیده می‌شود و پرتوهای گاما حاصلی پرتوهای گاما ناکشسان نامیده می‌شوند. احتمال وقوع پراکنگنگی ناکشسان که نقش مهمی در نظریه‌ی راکتور دارد، در هسته‌های سنگین بیشتر است (بسطانی و همکاران\(^2\)). قانون بقای انتزی جنبشی در این فراین برقرار نیست، زیرا بخشی از انرژی جنبشی، صرف ناکش گاما می‌شود و انتزی جنبشی کل کمتر از چیزیست که قبل از واکنش بوده است. ویژگی مهم این واکنش که فقط بین نورتون‌های با انرژی نسبتاً بالا با هسته‌های متوسط و سنگین رخ می‌دهد، آن است که در این واکنش نورتون به طور متوسط انرژی بیشتری در هر برخورد نسبت به پراکنگنگی کشسان با همان هسته از دست می‌دهد (لامارش\(^3\) ، 2001).

\[
\begin{align*}
{\frac{A}{Z}}X + \frac{1}{0}n & \rightarrow {\frac{A+1}{Z}}X + {\frac{1}{0}}n \\
{\frac{A}{Z}}X + \gamma {\frac{A}{Z}}X* & \rightarrow
\end{align*}
\]

\((10-1)\)

\(A\) هسته‌ی در حال پراکنگنگی است و \(\gamma\) گسیل می‌کند:

\[
{\frac{A}{Z}}X + \gamma {\frac{A}{Z}}X* \rightarrow
\]

\((11-1)\)

1-4-3 عوامل ایجاد پراکندگی ناکشسان نورتون:

1. جذب کامل نورتون در هدف و تولید هسته‌ی مرکب پراکنگنگی، سبب می‌شود که هسته‌ی مرکب با گسیل یک نورتون، همان هسته‌ی هدف در حالت پراکنگنگی را تولید کند و این هسته‌ی با گسیل گاما به حالت پایه خود می‌رسد یعنی در اثر این پراکندگی مقادیری از انرژی نورتون صرف تولید گاما می‌شود.

\(^1\) Inelastic scattering
\(^2\) J. L. Basdevant et al. 2004
\(^3\) John R. Lamarsh. 2001
بر اساس مقاله در اینجا نوترون‌های تانتال از انرژی نوترون صرف تولید گاما می‌شود.

بر اساس نتایج تحقیقات در اینجا، نوترون‌های تانتال از انرژی نوترون صرف تولید گاما می‌شود.

1. چرب پرتو‌ها: در این گروه، نوترون‌های تانتال از انرژی نوترون صرف تولید گاما می‌شود. این گروه به نماد (n,γ) نمایش داده می‌شود. از آنجایی که نوترون‌ها از تانتال‌های مختلف به انرژی نوترون صرف تولید گاما می‌شود، این گروه به نماد (n,γ) نمایش داده می‌شود.

2. نوترون‌های تولید ذرات باردار: نوترون‌های تولید ذرات باردار از انرژی نوترون صرف تولید گاما می‌شود. این گروه به نماد (n,α) نمایش داده می‌شود. این گروه به نماد (n,α) نمایش داده می‌شود.

3. نوترون‌های تولید کنه: نوترون‌های تولید کنه از انرژی نوترون صرف تولید گاما می‌شود. این گروه به نماد (n,n′) نمایش داده می‌شود. این گروه به نماد (n,n′) نمایش داده می‌شود.

16
هسته‌های حاوی آب سنگین یا بریلیوم بسیار مهم است، زیرا ^9Be و ^2He دارای نیتران‌های مست مقیدی هستند که به آسانی می‌توان آن‌ها را یافت.

$$A_n^ZX + _0^1n\rightarrow A_n^ZX + _0^2n$$

(13-1)

4. شکافته: نیتران و نیترانهای سنگین جذب می‌شود و تغییراتی که هسته مربوط به آن ایجاد می‌کند.

$$^{235}_{92}U + _0^1n\rightarrow ^{236}_{92}U \rightarrow X + Y + (v)n$$

(14-1)

که در آن ۷، تعداد نیتران است و X و Y هسته‌های سبک‌تر.

5. محصولات شکافته با پاره‌های شکافته.

1-5 سطح مقطع

حدود برهمکنش نیتران با هسته، بر حسب کمیت سطح مقطع بیان می‌شود.

اگر یک هدف تازی با مساحت A و ضخامت X که دارای N اتم در واحد حجم است در جلوی یک باریکه نیترانی‌کت انرژی و تک جهت که شدت I دارد قرار بگیرد، به طوری که همه سطح هدف به‌طور همسان در معرض بمباران نیتران قرار بگیرد، نرخ واکنش در هدف این تعداد کل نیتران هایی که در هدف در واحد زمان جذب شده‌اند، با شدت باریکه نیتران، تعداد نیتران‌ها در هدف، سطح مقطع و ضخامت هدف مناسب می‌باشد. و به صورت زیر تعیین می‌شود:

$$\sigma_{\text{INAX}} = \frac{\text{نرخ واکنش در هدف}}{\text{سایر تغییرات و با شدت}}$$

در این رابطه، σ ثابت تناسب بوده و با نام سطح مقطع نشان‌دهنده می‌شود و ضرب NAX تعداد کل هسته‌های موجود در هدف را نشان می‌دهد. تعداد برخوردها در هر ثانیه با یک هسته، برای با σI است. در نتیجه σ برای $\text{بلاک برخوردهای نیتران در باریکه} \rightarrow$ شدت واحد در هر ثانیه با یک هسته است. σ دارای بعد به سطح بوده و در واقع سطح مؤثر هسته برای برهمکنش با نیتران را نشان می‌دهد. سطح مقطع

1. Cross section
بر حسب کمیت بارن می‌شود. یک بارن 1 برابر با \(10^{-24} \) سانتی‌متر مربع بوده و با علامت \(b \) نشان داده می‌شود.

همان‌گونه که گفته شد نورتون با روشنی‌های گوناگونی برا ماده برهمکنش می‌کند. مناسب است که برهمکنش‌های نورتون را با استفاده از سطح مقطع‌های آنها بررسی کنیم. برهمکنش کشسان با سطح مقطع الستیک، \(\sigma_s \), برهمکنش ناکشسان با سطح مقطع ناکشسان، \(\sigma_i \), برهمکنش گیرندازی \(\gamma \) با سطح مقطع در آشامی \(\Gamma \), و برهمکنش شکافت را با سطح مقطع \(\sigma_f \), و ... نشان می‌دهیم.

با جمع سطح مقطع‌های برای تمام برهمکنش‌های ممکن، سطح مقطع کل را بدست می‌آوریم و با

\[
\sigma_t = \sigma_s + \sigma_i + \sigma_f + \ldots
\]

(1-16)

1-5-1- سطح مقطع جذب ۲

مجموع تمام سطح مقطع‌های واکنش‌هایی که در آنها نورتون نابشی نابیم گردید تحت عنوان سطح مقطع جذب شناخته می‌شود و با نماد \(\sigma_a \) نشان می‌دهند:

\[
\sigma_a = \sigma_f + \sigma_n + \sigma_p
\]

(1-17)

در اینجا \(\sigma_p \) و \(\sigma_a \) سطح مقطع برای واکنش‌های \((n,p)\) و \((n,\alpha)\) (ن) می‌باشند.

1-5-2- سطح مقطع پراکندگی غیر‌کشسان ۳

تفاضل بین سطح مقطع کل و سطح مقطع کشسان را سطح مقطع پراکندگی غیر‌کشسان گویند و با

\[
\sigma_{ne} = \sigma_t - \sigma_s = \sigma_t + \sigma_a
\]

(1-18)

1. barn
2. absorption cross-section
3. nonelastic scattering
<table>
<thead>
<tr>
<th>Family name: Azimzadeh</th>
<th>Name: Raghibeh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title of Thesis: Calculation of the thermal neutron flux emitted from Am-Be neutron source using MCNP code and solving of the neutron diffusion equation</td>
<td></td>
</tr>
<tr>
<td>Supervisor: Farhad Zolfagharpour Ph.D</td>
<td></td>
</tr>
<tr>
<td>Advisor: sara Azimkhani</td>
<td></td>
</tr>
<tr>
<td>Graduate Degree: Master of Science</td>
<td></td>
</tr>
<tr>
<td>Major: Physics</td>
<td>Specialty: Nuclear</td>
</tr>
<tr>
<td>University: Mohaghegh Ardabili</td>
<td>Faculty: Science</td>
</tr>
<tr>
<td>Graduation date: 2016/9/10</td>
<td>Number of pages: 132</td>
</tr>
</tbody>
</table>

Abstract:

In this investigation the thermal neutron flux and it’s spectrum in outside of isoflux or the water barrel that contain the Am-Be neutron source, calculated. For doing this calculation we define the exact geometry of source in laboratory in MCNP code. Also the exiting of neutron flux from water barrel calculated by solving neutron diffusion equation then the extracted result from MCNP and solving diffusion equation are compared.

Keyword: Am-Be neutron source, neutron flux, neutron diffusion equation, MCNP code.
University of Mohaghegh Ardabili
Faculty of sciences
Department of Physics

Thesis submitted in partial fulfilment of the requirements for the degree of M.Sc. in Physics Specialty Nuclear

Title:
Calculation of the thermal neutron flux emitted from Am-Be neutron source with MCNP code and solving of the neutron diffusion equation

Supervisor:
Farhad Zolfagharpour Ph.D

Advisor:
Sara Azimkhani M.Sc.

By:
Raghieh Azimzadeh
2016