پایان‌نامه برای دویفت درجه کارشناسی ارشد در رشته زیست‌شناسی گراش فیزیولوژی جانوری

عنوان:
اثرات ویتامین E روی استرس‌پوزنر موش‌های تیمار شده با پوسولفان

استاد راهنما:
دکتر طوبا میرزاییور

اساتید مشاور:
دکتر لطفعلی معصومی
دکتر ابوالفضل پاپرامی

پژوهشگر:
فاطمه روح‌نواز الله لو

زمستان 94
بیوسولفان یک داروی شیمیایی درمانی برای درمان سرطان است. این دارو اثرات سایتوکسیک در اندام‌های مختلف حیوان ایجاد می‌کند. در مطالعه حاضر تریک دارای اثرات متفاوتی در مقابل بیوسولفان (35 و 40 mg/kg) به طور وزن بندی استرس اکسیدازی را در بیشتر موشهای 30 روز از پیام افزایش داد. فعالیت آنزیم کاتالاز به طور معمول در بیشتر موشهای بیوسولفان در مقایسه با کنترل در طی فاز نیمه کاهش یافت. مطالعه با بیوسولفان یک کاهش معنی‌دار در تعداد اسپرم مشاهده شد. هدف از مطالعه حاضر ارزیابی اثرات ویتامین E بیوسولفان یک کاهش معنی‌دار در تعادل اسپرم مشاهده شد. هدف از مطالعه حاضر ارزیابی اثرات ویتامین E بیوسولفان یک کاهش معنی‌دار در تعادل اسپرم مشاهده شد.

| رشته: زیست شناسی

dانشگاه: محقق اردبیلی

tاریخ دفاع: 94.10.27

tعداد صفحات: 63 |

کلمات کلیدی: پارامترهای بیشتر ای موس، ویتامین E، کاتالاز، تعادل اسپرم
<table>
<thead>
<tr>
<th>فصل</th>
<th>عنوان مطلب</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>مقدمه</td>
</tr>
<tr>
<td>2</td>
<td>تعریف ناباوری</td>
</tr>
<tr>
<td>1-1</td>
<td>درمان ناباوری در مردان</td>
</tr>
<tr>
<td>2-1</td>
<td>دستگاه تولید مثل مردان</td>
</tr>
<tr>
<td>3</td>
<td>بیضه ها</td>
</tr>
<tr>
<td>4</td>
<td>عوامل موثر در ایجاد ناباوری در مردان</td>
</tr>
<tr>
<td>5</td>
<td>عوامل مادر زاید</td>
</tr>
<tr>
<td>6</td>
<td>عوامل اکتسابی</td>
</tr>
<tr>
<td>7</td>
<td>عوامل ناشاکتی</td>
</tr>
<tr>
<td>8</td>
<td>عوامل ناشاکتی</td>
</tr>
<tr>
<td>9</td>
<td>سرطان</td>
</tr>
<tr>
<td>9-1</td>
<td>درمان سرطان با انواع داروهای شیمی درمانی</td>
</tr>
<tr>
<td>5-1</td>
<td>بوسولان به عنوان یک داروی شیمی درمانی</td>
</tr>
<tr>
<td>6-1</td>
<td>تاثیر بوسولان بر بیضه</td>
</tr>
<tr>
<td>7-1</td>
<td>رادیکالهای آزاد</td>
</tr>
<tr>
<td>8-1</td>
<td>گونه های فعال اکسیدن (ROS)</td>
</tr>
<tr>
<td>9-1</td>
<td>اثرات مخرب ROS</td>
</tr>
<tr>
<td>10-1</td>
<td>آنتی اکسیدانها</td>
</tr>
<tr>
<td>10-1</td>
<td>سیستم آنتی اکسیدان شامل دو نوع غیر آنزیمی و آنزیمی است</td>
</tr>
<tr>
<td>10-1</td>
<td>آنتی اکسیدان‌های غیر آنزیمی</td>
</tr>
<tr>
<td>10-1</td>
<td>آنتی اکسیدان‌های آنزیمی شامل آنزیم‌های زیر می‌باشد</td>
</tr>
<tr>
<td>10-1</td>
<td>سیستم اکسیدز دیسموتاز (SOD)</td>
</tr>
<tr>
<td>10-1</td>
<td>سیستم اکسیدز کاتالاز (CAT)</td>
</tr>
<tr>
<td>10-1</td>
<td>گن‌آناتیون پراکسیداز (GPX)</td>
</tr>
</tbody>
</table>
فصل دوم: مواد و روش ها

1-11-1-آزمیم‌ها
20-11-1-ساخت‌آزمیم‌ها
20-11-2-بررسی کاتالاز و نوع واکنش آن
22-12-1-بتامین E و نقش آن در فعالیت آنتی اکسیدانی
24-پیشینه تحقیق
25-ضرورت انجام تحقیق
25-اهداف تحقیق
25-فرضیه‌ها

فصل دوم: مواد و روش ها

26-مواد و روش ها
27-مواد و روش ها
28-1-ایزاز و مواد مورد استفاده در پژوهش
29-2-روش کار
29-2-1-آماده‌سازی گروه‌های آزمایش
29-3-روش آماده‌سازی بوسフォتان و تزریق آن
30-آماده‌سازی دوز ۴۰ mg/kg
30-آماده‌سازی دوز ۳۵ mg/kg
30-۴-مطالعه بافتی بهبود و جراحی بینی دیدیم
31-۵-تهیه برخی بهره‌های رنگ شده
31-۵-۱-آماده‌سازی رنگ گیری
32-۵-۲-برز گیری
32-۵-۳-رنگ آمیزی
32-۶-روش مطالعه پارامتر‌های اسپرم در ای بی دیدیم با استفاده از میکروسکوپ نوری
33-۶-۱-شمارش تعداد اسپرم‌های ای بی دیدیم
33-۶-۲-قاب‌های تحرک اسپرم
33-۶-۳-مزایا اسپرم‌های زنده و مدرن
34-۷-۲-نحوه آماده‌سازی و بتامین E
فصل سوم: نتایج و یافته‌های بازوهش
<table>
<thead>
<tr>
<th>شماره جدول</th>
<th>عنوان جدول</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>موارد مورد استفاده در پژوهش همراه با نام شرکت سازنده</td>
</tr>
<tr>
<td>2-2</td>
<td>ابزار مورد استفاده در پژوهش</td>
</tr>
<tr>
<td>2-3</td>
<td>مقایسه پارامترهای بیضه، لوله های منی ساز و اسپرم در گروه کنترل با گروههای آزمون</td>
</tr>
<tr>
<td>3-1</td>
<td>مقایسه میانگین فعالیت آنزیم کاتالاز در گروههای کنترل و تیمار</td>
</tr>
<tr>
<td>3-2</td>
<td>مقایسه میانگین فعالیت آنزیم کاتالاز در گروههای کنترل و تیمار</td>
</tr>
</tbody>
</table>
فهرست نمودارها

شماره و عنوان نمودار

نمودار ۳-۱: مقایسه میانگین ضخامت کبسول بیضه (میکرومتر) در گروه کنترل و گروه‌های تیمار (میانگین ± انحراف معیار) پس از گذشت دو ماه .. ۴۶
نمودار ۳-۲: مقایسه میانگین وزن بیضه (میلی گرم) در گروه کنترل و گروه‌های تیمار (میانگین ± انحراف معیار) پس از گذشت دو ماه .. ۴۷
نمودار ۳-۳: مقایسه میانگین قطر طولی بیضه (میکرومتر) در گروه‌های کنترل و تیمار (میانگین ± انحراف معیار) پس از گذشت دو ماه .. ۴۸
نمودار ۳-۴: مقایسه میانگین ضخامت اپی تلیوم لوله‌های منی ساز (میکرومتر) در گروه‌های کنترل و تیمار (میانگین ± انحراف معیار) پس از گذشت دو ماه .. ۴۹
نمودار ۳-۵: مقایسه میانگین قطر عرضی بیضه (میکرومتر) در گروه‌های کنترل و تیمار (میانگین ± انحراف معیار) پس از گذشت دو ماه .. ۴۹
نمودار ۳-۶: مقایسه میانگین قطر داخلی لوله‌های منی ساز (میکرومتر) در گروه‌های کنترل و تیمار (میانگین ± انحراف معیار) پس از گذشت دو ماه .. ۵۰
نمودار ۳-۷: مقایسه میانگین تعداد اسپرم های زنده در واحد حجم (۱۰×۶) در گروه‌های کنترل و تیمار (میانگین ± انحراف معیار) پس از گذشت دو ماه .. ۵۰
نمودار ۳-۸: مقایسه میانگین قدرت زیست اسپرم بر حسب درصد در گروه‌های کنترل و تیمار (میانگین ± انحراف معیار) پس از گذشت دو ماه .. ۵۰
<table>
<thead>
<tr>
<th>شماره و عنوان شکل</th>
<th>صفحه</th>
</tr>
</thead>
<tbody>
<tr>
<td>شکل 1-1: برش عمودی شماتیک از بیش (A)</td>
<td>5</td>
</tr>
<tr>
<td>شکل 1-2: مناطق مختلف (AZF) در کروموزوم Y</td>
<td>7</td>
</tr>
<tr>
<td>شکل 1-3: عدم تعادل باشی از تجمع کلونه های فعل اکسیژن و کم شدن آنتی اکسیدان ها</td>
<td>17</td>
</tr>
<tr>
<td>شکل 1-4: فرم مولکول آنزیم کاتالاز</td>
<td></td>
</tr>
<tr>
<td>شکل 2-1: مرحله جداسازی بیضه و مجرای اپیدیدیم</td>
<td></td>
</tr>
</tbody>
</table>

Bookmark not defined.

شکل 3-1: تمامی از لوله های منی بیضه موش در گروه کنترل | 38 |

وکولتر دار شدن سلول‌های سرتولی آغاز شده است. بزرگ‌نمایی ×10 | |

شکل 3-2: قطر طولی (b) و عرضی (c) لوله های منی بیضه موش در بیضه موش‌هایی که در معرض دوز | 40 |

بیوسولفان بودن | |

شکل 3-3: مقایسه ضخامت کبسول بیضه در گروه کنترل (a) و گروه دوز 35 mg/kg بیوسولفان (b) و دوز 35 mg/kg بیوسولفان (c) | 41 |

بیوسولفان بودن | |

شکل 3-4: مورفولوژی لوله های منی بیضه بس از تزریق ویتامین E در موش‌هایی که قبل به مدت 30 روز | 44 |

معرض دوز 40 mg/kg بیوسولفان بودن | |

شکل 3-5: بیضه های موش پس از 30 روز که در معرض بیوسولفان با دوز 40 mg/kg بیوسولفان بودن به مدت 30 روز دیگر به | 45 |

آنها اکل تزریق شد. اثر احیایی ناجیری در سطح لوله های منی ساز مشاهده شد | |
فهرست علائم اختصاری

<table>
<thead>
<tr>
<th>مفهوم یا توضیح</th>
<th>علائم اختصاری</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypogonadotrophic hypogonadism</td>
<td>HH</td>
</tr>
<tr>
<td>World Health Organization</td>
<td>WHO</td>
</tr>
<tr>
<td>Azoosperma factor region</td>
<td>AZF</td>
</tr>
<tr>
<td>Dimethyl Sulphoxid</td>
<td>DMSO</td>
</tr>
<tr>
<td>Gonadotropin-releasing hormone</td>
<td>GnRH</td>
</tr>
<tr>
<td>Luteinizing hormone</td>
<td>LH</td>
</tr>
<tr>
<td>Follicle-stimulating hormone</td>
<td>FSH</td>
</tr>
<tr>
<td>International Agency for Research on Cancer</td>
<td>IARC</td>
</tr>
<tr>
<td>Reactive oxygen species</td>
<td>ROS</td>
</tr>
<tr>
<td>Catalas</td>
<td>CAT</td>
</tr>
<tr>
<td>Dulbeko Modified Eagle Medium</td>
<td>DMEM</td>
</tr>
<tr>
<td>Sertoli Cell-Only Syndrom</td>
<td>SCO</td>
</tr>
</tbody>
</table>
فصل اول:
مقدمه و پیشینه ی تحقیق
1- مقدمه

1-1- تعریف ناباروری 1:
طبق تعیین سازمان جهانی بهداشت (WHO) ناباروری عدم توانایی زوجین در باروری بعد از یک سال آمیزش بدون استفاده از روش های پیش گیری از بارداری است (TIAN, Fu, Qin et al. 2014)
(CHEUNG et al. 2015)
ناباروری به دو نوع اولیه و ثانویه تقسیم می شود:

ناباروری اولیه: اصطلاح ناباروری اولیه در مورد افرادی به کار می رود که هرگز باردار نشده اند.

ناباروری ثانویه: در مورد افرادی به کار می رود که در آنها یک حاملگی اتفاق افتاده اما تلاش های بعدی برای بارداری ناموفق بوده است (Paul-Simon 2011).

1-1-2- ناباروری در مردان:

ناباروری یکی از شایع ترین مشکلات بهداشتی جهان است که حدود 10 تا 15 درصد زوج ها را شامل می شود و علل ابتلا به این بیماری می تواند از موارد زیر باشد (Poongothai, Gopenath et al. 2009, Türk, Mändar et al. 2014).

بیماری از نمی از موارد ناباروری در مردان به علت اختلال در اسپرماتوزن و کمبود تعداد اسپرم ها است.

فاکتورهای ناباروری با علل مربوط به شامل چهار دسته کلی است:

بیماری های بیضه (هیپوگنادیسم اولیه) 30-40%

بیماری های مسیر هیپوتشالوس (هیپوگنادیسم ثانویه) 1-2%

نتایج مربوط به مجاری منتقل کننده اسپرم 10-20%

1- Infertility
2- World Health Organization
1-2-دستگاه تولید مثل مردانه:

دستگاه تناسلي مذكر، شامل اندام های تناسلي خارجي و اندام های تناسلي داخلي می باشد:

اندام های تناسلي خارجي مذكر شامل:

- آلتناسلي
- کيسه ي بيضه
- بيضه ها
- اپي ديديم
- طناب اسپرماتيك

اندام های تناسلي داخلي مذكر شامل:

- مجاري دفران
- کيسه هاي متي
- مجاري انزالي
- عدد بروستات

1-Male Reproductive System
2-External Genital Organs
3-Internal Genital Organs
4- Penis
5- Scrotum
6- Epididymis
7- Spermatic Cord
8- Ductus Deferens
9- Seminal Vesicle
10- Ejaculatory Ducts
11- Prostate
پنیس، اندام جفت گیری مرد بوده و از دو قسمت ریشه و تنها تشکیل شده است. کیسه ی بیضه،
کیسه ای می باشد که بیضه ها، اپی دیدیم و بخش تحتانی طناب اسپرمارتیک را در خود جای داده
است. بیضه، غده جنسی مردانه بوده و معادل تخمدان در جنس مانند می باشد.
ایپی دیدیم، توده ای از لوله های درهم پیچیده برای ذخیره ی اسپرم می باشد.
کیسه ی منی، در فاصله ی بین مثانه و رکتور قرار داشته و مسئول بخش عمده ای از مايع منی
می باشد.
مجرای دفران، لوله ای عضلانی می باشد که اسپرم را از اپی دیدیم به مجاری انزایی هدایت می
کند. مجرای انزایی در هر طرف، از الحاق مجرای دفران و مجرای کیسه ی منی ایجاد می شود.
پروتئین، غده ی ضریبی دستگاه تناسلی مرد می باشد و ترشح آن، 30٪ منی را تشکیل می
دهد. غدد کوپر، در طرفین اورترا غشایی قرار دارند (Jones and Lopez 2013).

1-2-1-بیضه ها: 1

عضو سفت، بيضوی شکل و متحرک است.

قطب فوقانی آن بطرف چپ و خارج و قطب تحتانی آن بطرف عقب و داخل قرار گرفته است.
بیضه چپ حدود 1 سانتی متر یکنتر از بیضه راست قرار گرفته هر بیضه در داخل کیسه بیضه،
توسط طناب اسپرمارتیک به سطح خلاصی آن متصل است. آوریز منی باشد. بیضه ها تولید کننده
اسپرم و هورمون ها خصوصی تستوسترون می باشد.

اسپرم در لوله های منی ساز تولید می شود که این لوله ها توسط لوله های مستقیم (Straight
Rete Testis) به ناحیه ای بنام شبکه بیضه (tubuls

1- Testes
شکل 1-1: برخ عمودی شماتیک از بیضه (A)؛ لوله های منی ساز در یک مقطع کوچک از بیضه (B) \((\text{Jones and Lopez 2013}) \)

1-3 عوامل موثر در ایجاد ناباروری در مردان:

حالاتی که غیر طبیعی در تعداد اسپرم منجر به ناباروری در مردان می‌شوند این حالت‌ها شامل موارد زیر می‌باشند:

به حالتی که فرد فاقد اسپرم در مایع منی است، آزوزاپرمی اطلاق می‌شود. این حالت با شانس سپار کم باروری در مردان و یا عقیمی همراه است. اگر بیضه نتواند اسپرم تولید کند یا در مسیر تخلیه، اسپرم از بیضه تا مجاری انزالی، انسداد وجود داشته باشد، آزوزاپرمی ایجاد می‌شود. (\text{Christman, Gudeman et al. 2014})\)

ایگواسپرمی به حالتی گفته می‌شود که غلظت اسپرم (تعداد اسپرم) در مایع منی بیشتر اندک است. وقتی که اسپرم مورفولوژی غیر عادی داشته باشد حالت ترازواسپرمیا ایجاد می‌شود. (\text{Isidori, Latini et al. 2005})\)

1- Azooospermic
2- Oligozoospermia
3- Teratozoospermia
تقدیراً در نیمی از موارد ناباروری، به نحوی عامل مردانه دخیل است، حضور عامل مردانه اغلب بر اساس پارامترهای اسرپرم غیرطبیعی (آزواسپرمی و الیگواسپرمی) صورت می‌گیرد. عوامل ایجاد ناباروری به سه شکل هستند: اکتسابی، مادر زاده و شناخته نشده.

1-3-1- عوامل مادر زاده:

عوامل مادرزادی ممکن است منشأ زنتیکی داشته یا نتیجه ی ناهنجاری تکوینی باشند (Hsieh, Hollander et al. 2010). مهمترین عوامل زنتیکی مورث در ناباروری مردان شامل سندرم کلاین فیلترا، ریز حذف های کروموزوم Y و نقاء تشکیل تک زنی و نقاصی نجد عاملی است.

شیوع ناهنجاری های کروموزومی در بین مردان عقیم بالاتر است و با شمارش اسرپرم نسبت معکوس دارد. سندرم کلاین فیلترا، یک علت اصلی اختلال کروموزومی فرد در مردان است. در تعدادی از مبتلایان به این سندرم اندام سه شانه‌های یکی یا دو علت و عملکرد سلول های لیدیک دچار اختلال می‌شود. یک‌سومین سطح تستوسترون ممکن است نرمال باشد، سطح استرادیول نرمال یا بالاتر و سطح FSH به‌طور افزایش می‌یابد. این بیماری شایع ترین علت هیپوگنادیسم در مردان نیز می‌باشد (Jungwirth, Giwercman et al. 2012).

ریز حذفی کروموزوم Y یکی از عوامل عقیمی در مردان است. ریز حذفی به حذف کروموزوم Y گفته می‌شود که ژن زن را شامل شده، اما وسعت آن به اندام‌های نیست که با روش‌های سیستم‌تکیه‌ای قابل تشخیص باشد. ریز حذفی در مردان با آزواسپرمی و یا الیگواسپرمی شدید همراه است (Jungwirth, Giwercman et al. 2012). ریز حذفی معمولا در بازوی بلند کروموزوم Y (Yq) و ژن حذفی در منطقه (AZF) در اندام منطقه‌ای به حذف، منطقه‌ای به حذف

1-Klinefelter syndrome
2- Azoospermia factor region
حذف 3 زیر منطقه AZF

حذف 1-4 ZF منطقه CO1 در SHG (HOCH) است. بیشترین تفاوت شامل حذف های AZF،AZFB،AZFA است.

زادنی در دو منطقه AZF است. حذف ناحیه AZFA به سندرم SHG می‌شود که در آن سلول های سرتوئی در بیضه کامل هستند اما در انزال هیج اسپرمی دیده نمی‌شود (Ferlin, Garolla et al. 2005). حذف در منطقه AZFB منجر به توقف اسپرماتوزنس در مرحله اسپرماتوسیت اولیه می‌شود و حذف در منطقه AZF منجر به آزوسپرمی و الیگوسپرمی شدید در بیضه ها می‌شود.

شکل 1-2 مناطق مختلف (AZF) در کروموزوم Y

1-3-2 عوامل اکتسابی:

از عوامل اکتسابی و غیرزنتیکی موثر در ناباروری مردان می‌توان به علل هورمونی، ناهنجاری ساختاری، عفونت تناسلی، ضعف جنسی، ضربه به بیضه، عدم وجود کانال دفران، بعضی از جراحی ها، واریکوس، شیمی درمانی، داروها و عوامل محیطی (تابش، گرم) اشاره کرد (Wein, Kavoussi et al. 2011).

در اختلالات و اکتسابی در هیپوتالاموس یا هیپوفیز و در اثر کمبود ترشح LH و FSH اختلال هورمونی به نام هیپوغانادیسم هیپوغانادترفیک (HH) ایجاد می‌شود که ممکن است مادرزادی یا اکتسابی باشد.

نوع اکتسابی می‌تواند توسط مجموعه ای از عوامل موثر بر هیپوتالاموس و یا هیپوفیز ایجاد شود. تومورهای هیپوتالاموس یا هیپوفیز، می‌تواند ساقه هیپوفیز را تغییر شکل داده یا آن را تحت فشار قرار گیرد.

1- Sertoli cell-only
2-Luteinizing hormone
3-Follicle stimulating hormone
4- Hypogonadotrophic Hypogonadism
8

دهند و گنادوتروفهای هیپوفیزی را سرکوب کند. بعضی بیماران ها ترشح گنادوتروبين هیپوفیزی پا Ra مهار می کند. درمان با آنالوگهای GnRH (مثل برای سرطان بروستات) آندروژنها (مثل استروئیدهای آنابولیک) ممکن است ترشح گنادوتروبين را سرکوب کند. چاپی که از دلایل ناباروری در مردان است (El-Wakf, Elhabibi et al. 2015) با هیپوگنادیسم هیپوفیزی ارتباط دارد و از طریق مکانیسم های متعادل عمل می کند (Krausz 2011).

از عوامل محیطی موثر بر باروری می توان به گرمای محیط، تابش، ضربه به بیجمه واردوس و اشاره کرد. واردوس یا واردوسی شدن عروق بیضه و افزایش دما بیضه شایعترین بیماری مردان پس از بلوگ می باشد. سن شروع معمولاً در زمان بلوغ و یا بلافاصله پس از آن می باشد. البته در سن کمتر یا بالاتر نیز ممکن است ایجاد گردد. این بیماری با علائمی مانند عدم تقارن بیضه ها یا در ناحیه بیضه و در نهایت کاهش باروری ظاهر می شود. ولی شایعترین فرم آن بدون علائم بوده و پزشک به طور اتفاقی حين معاونی میتوانه آن می گردد. ارتباط دقيق بین ناباروری مردان و واردوس ناشانخته است، اما آنالیزها نشان داده است که از جراحی واردوس، بهبود شرايط مایع منی مشاهده می شود (Krausz 2011).

1-3- عوامل ناشنخته:

در برخی موارد برای ناباروری علت شناخته شده ای وجود ندارد که این شرایط تحت عنوان ناباروری ایدیوباتیک خوانده می شود (Ferlin, Vinanzi et al. 2011).

1-4- سرطان 1:

سرطان یک بیماری است که روابط و نظم بین سلولی را مختل کرده و باعث نافرمانی زن های حیاتی می شود. این بیماری در نتیجه تقسیم غیرقابل کنترل سلول ها که به علت آسیب یا جهش در ماده ی زنیتیکی سلولها در اثر عوامل محیطی یا زنیتیکی ایجاد می شود به وجود می آید. چهار دسته از زن...
های کلیدی که در هدایت سرول‌های سرطانی نقش دارند شامل زن‌های توده زایا انگور، زن‌های مهار کننده توموری، زن‌های ترمیم کننده و زن‌های مروک سلولی برنامه ریزی شده هستند. اگر یک جهش در این زن‌ها ایجاد شود، سرول‌های طبیعی از مسیر خود خارج شده و تحت تأثیر جریان‌های جدید قرار می‌گیرد و به سوی سرطانی شدن پیشرفت می‌کنند. بیماری سرطان دومین علت شایع مروک و میر در جهان بعد از بیماری‌های قلبی عروقی است. بجز سرطان خون در بقیه موارد توده سلولی غیر طبیعی و تومور ایجاد می‌شود. تومور اولیه بوسیل بیش از حدی رشد کرده و به نقاط دیگر بدن متاثر می‌شود و سرطان باعث مروک می‌شود. در سرطان خون سرول‌های سرطانی رشد کرده و در حرکت می‌آیند (IARC).

(Pérez-Herrero and Fernández-Medarde 2015)

با توجه به گزارش جهانی سرطان که در سال 2014 توسط آژانس بین‌المللی تحقیقات سرطان منتشر شده در هر سال حدود 14 میلیون فرد جدید به این بیماری مبتلای می‌شوند. انتظار می‌رود این رقم به 22 میلیون نفر در سال در دو دهه آینده برسد (Zhu, Liu et al. 2015).

1-4-1-درمان سرطان با انواع داروهای شیمی درمانی:

اکثر بیماران مبتلا به سرطان در طول دوره ی بیماری خود با شیمی درمانی، درمانی می‌شوند (Ipma, Renken et al. 2015). جراحی، شیمی درمانی، پرتو درمانی، هورمون درمانی، ایمنی درمانی و زن درمانی (همان پیوند مغز استخوان) گزینه‌های اولیه برای درمان سرطان می‌باشند. از آنجا که سلول‌های سرطانی می‌توانند به بافت‌های اطراف حمله کرده و به سایر نقاط بدن همراهت کند، شیمی درمانی به عنوان یک درمان سیستمیک توسط پزشکان به کار گرفته می‌شود (Zhu, Liu et al. 2015). طی این نوع درمان داروهای ضد سرطان برای درمان سرطان‌های متاستاتیک استفاده می‌شود. این داروها باعث مهار تقویت سلول‌های منشأی می‌شود که با سرعت زیاد در حال رشد و تقویت هستند. اما مسئله بروز سلول‌های طبیعی با رشد بالا مانند فولیکول‌های مو، مغز استخوان و سلول‌های استخوان گوارش نیز اثر می‌گذارد (Pérez-Herrero and Fernández-Medarde 2015).

در واقع این
Family name: Rohnavaz
Name: Fatemeh

Title of Thesis: The effects of Vitamin E on spermatogenesis of busulfan-treated mice

Supervisor: Dr. Tooba Mirzapour
Advisors: Dr. Lotf Ali Masoumi – Dr. Abolfazl Bayrami

Graduate Degree M.Sc. / M.A.
Major: Biology
Specialty: Animal Physiology
University: Mohaghegh Ardabili
Faculty: Science
Graduation date:
Number of pages: 63

Abstract:
Busulfan (Bu) is a chemotrapic drug for treatment of cancer. It manifests cyto-toxic effects in different organs in animals. In the present study, intraperitoneal injection of different dosage of Bu (35 and 40 mg/kg body weight) increased oxidative stress in mice testes during 30th day of post-treatment. The enzymatic activity of catalase (CT) were significantly decreased over the post-treatment phase in Bu-treated mice testes compared to controls. Following Bu treatment, a significant decrease in sperm count was observed. The purpose of the present study was to evaluate the effect of vitamins E supplementation on Bu-treated mice testes. Therefore, 40 mg/kg Bu-treated mice group were injected with vitamins E, to assess the effect of the vitamin in cytotoxicity and other manifestations. Supplementation of vitamin E (100 mg/kg body weight) to Bu-induced mice group declined oxidative stress, increased sperm count profile, depressed the percentage of sperm abnormality and increased the activity of antioxidant enzyme (Catalase).

Keywords: Mice Testes parameters; Vitamin E; Catalase, Sperm count
Thesis submitted in partial fulfilment of the requirements for the degree of M.Sc. / M.A. in Biology-Animal Physiology

Title:

The effects of Vitamin E on spermatogenesis of busulfan-treated mice

Supervisor:

Tooba Mirzapour (Ph. D)

Advisors:

Lotf Ali Masoumi (Ph. D)
Abolfazl Bayrami (Ph. D)

By:

Fatemeh Rohnavaz Lalelo

January-2016