دانشکده علوم
گروه آموزشی شیمی کاربردی

پایان‌نامه برای دریافت درجه کارشناسی ارشد
در رشته‌ی شیمی گرایش شیمی فیزیک

عنوان:
تیم و بررسی فعالیت فتوکاتالیزوری نانو کامپوزیت‌های TiO$_2$/Ag$_2$CrO$_4$ تحت ناحیه نور مرئی برای تخریب چند آلاینده رنگی آلی

استاد راهنما:
دکتر عزیز حبیبی ینگجه

پژوهشگر:
سولماز فیض پور

تابستان 1396
<table>
<thead>
<tr>
<th>نام: سولمال</th>
<th>نام خانوادگی دانشجو: فیض بور</th>
</tr>
</thead>
<tbody>
<tr>
<td>عنوان پایان نامه: تحقیق و بررسی فعالیت فتوکاتالیزوری نانوکامپوزیت‌های TiO$_2$/Ag$_2$CrO$_4$ تحت تابش نور مرئی برای تخریب چند الیزندی رنگی آلی</td>
<td>تحقیق چند الیزندی رنگی آلی</td>
</tr>
<tr>
<td>استاد راهنما: دکتر عزیز حبیبی پنجه</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>مقطع تحصیلی: کارشناسی ارشد</th>
<th>رشته: شیمی</th>
</tr>
</thead>
<tbody>
<tr>
<td>دانشگاه: معهد ملی فیزیک</td>
<td>کارشناد: استخدام</td>
</tr>
<tr>
<td>تعداد صفحات: 96</td>
<td>تعداد صفحات: 96</td>
</tr>
<tr>
<td>ماه و سال چاپ: 6/14</td>
<td>ماه و سال چاپ: 6/14</td>
</tr>
</tbody>
</table>

چکیده: در این پژوهش، تحقیقی از کاربرد زیاد نانوذیات TiO$_2$/Ag$_2$CrO$_4$، TiO$_2$/Ag$_2$WO$_4$/AgBr و TiO$_2$/Fe$_3$O$_4$/CoWO$_4$ در رسانه‌های تابش نور مرئی انجام شد. این نانوذیات تحت تابش نور مرئی رعوبات زیادی و تورم به جلب کردن اثرات مثبتی نسبت می‌دهند. در این پژوهش، فعالیت فتوکاتالیزوری از نظر عملکرد جذابیت و سطح برداشت و خصوصیات الکترونی نانوذیات به شرح زیر توسط تکنیک‌های برتری X (XRD)، میکروسکوب الکترونی روندی (SEM)، تکنیک‌های پرتوی (EDX)، سطح ویزه (FT-IR)، طیف نسبی بازتاب نفوذی (PL) و فتوولومیتریسنس (BET) بررسی گردید. در ادامه، فعالیت فتوکاتالیزوری نانوذیات در بهره‌وری و توانایی پاک‌سازی ماده مطالعه بررسی گردید. نانوذیات به ترتیب TiO$_2$/Ag$_2$CrO$_4$، TiO$_2$/Fe$_3$O$_4$/CoWO$_4$ و TiO$_2$/Ag$_2$WO$_4$/AgBr می‌توانند در تابش نور مرئی و قرار گرفتن در حالت بیشتر زیادی فعالیت فتوکاتالیزوری را نسبت به درصدی داشته باشند. تأثیر عوامل مانند زمان، نیروی تابش نور مرئی و نوع ماده در اندام‌های گونه‌های مختلف بر روی سینتیک تخریب فتوکاتالیزوری نیز مورد بررسی قرار گرفت.
فهرست مطالب

شماره و عنوان مطالب

فصل اول: مقدمه

<table>
<thead>
<tr>
<th>صفحه</th>
<th>عنوان</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>مقدمه ..</td>
</tr>
<tr>
<td>2</td>
<td>آپ ...</td>
</tr>
<tr>
<td>3</td>
<td>رنگ‌های نگاری زیست محسّنی</td>
</tr>
<tr>
<td>4</td>
<td>فناوری نانو ..</td>
</tr>
<tr>
<td>5</td>
<td>فرانشه‌ای اکسیداسیون پیچشتفه</td>
</tr>
<tr>
<td>6.1</td>
<td>فتوکالیازور ..</td>
</tr>
<tr>
<td>6.2</td>
<td>فتوکالیازورهای ناهمن</td>
</tr>
<tr>
<td>7.1</td>
<td>خصوصیات فتوکالیازورهای</td>
</tr>
<tr>
<td>8.1</td>
<td>نیمه رسانا ..</td>
</tr>
<tr>
<td>8.2</td>
<td>تحریک نوری شکاف انرژی نیمه رسانا</td>
</tr>
<tr>
<td>9.1</td>
<td>نانو ذرات ...</td>
</tr>
<tr>
<td>10.1</td>
<td>روش‌های تولید نانوذرات</td>
</tr>
<tr>
<td>11.1</td>
<td>نانوذرات مغناطیسی ..</td>
</tr>
<tr>
<td>12.1</td>
<td>روش‌های شناسایی نانوذرات</td>
</tr>
<tr>
<td>12.1.1</td>
<td>میکروسکوپ‌های الکترونی</td>
</tr>
<tr>
<td>12.2</td>
<td>طیف سنجی پراش انرژی پرتو ایکس</td>
</tr>
<tr>
<td>12.3</td>
<td>پراش اشعه ایکس ..</td>
</tr>
<tr>
<td>13.1</td>
<td>مکانیسم فرانشه‌ای فتوکالیازوری</td>
</tr>
<tr>
<td>13.1.1</td>
<td>بررسی سینتیک فرانشه‌ای فتوکالیازوری</td>
</tr>
<tr>
<td>13.1.1.1</td>
<td>مدل سینتیک‌کی لانگمار- هینشلود</td>
</tr>
<tr>
<td>14.1</td>
<td>سینتیک مرتبه اول ...</td>
</tr>
<tr>
<td>15.1</td>
<td>در اکسید تیتانیوم ..</td>
</tr>
<tr>
<td>15.1.1</td>
<td>خواص ناخالصی در اکسید تیتانیوم</td>
</tr>
<tr>
<td>15.1.2</td>
<td>کاربرد‌های در اکسید تیتانیوم</td>
</tr>
<tr>
<td>15.1.3</td>
<td>استفاده از فتوکالیازورهای ناهمنگ برای تولید هیدروژن</td>
</tr>
<tr>
<td>15.1.4</td>
<td>سنسورهای گازی ...</td>
</tr>
<tr>
<td>15.1.5</td>
<td>خاصیت ضباکتری‌پایی در اکسید تیتانیوم</td>
</tr>
<tr>
<td>15.1.6</td>
<td>خاصیت خود تمیز شوندنگی</td>
</tr>
</tbody>
</table>
فصل دوم: بخش تجربی

1- وسایل، دستگاه‌ها و مواد شیمیایی مورد استفاده

1-1- وسایل مورد استفاده

1-1-1- دستگاه‌های مورد استفاده

1-1-2- مواد شیمیایی مورد استفاده

2- تهیه نانوکامپوزیت‌های TiO\(_2\)/Ag\(_2\)CrO\(_4\) به روش فلакس

3- تهیه نانوکامپوزیت‌های TiO\(_2\)/Ag\(_2\)WO\(_4\) به روش فلکس

3-1- تهیه نانوکامپوزیت‌های TiO\(_2\)/Ag\(_2\)WO\(_4\)/AgBr به روش فلکس

3-2- تهیه نانوکامپوزیت‌های TiO\(_2\)/Ag\(_2\)PO\(_4\) به روش فلکس

4- تهیه نانوکامپوزیت‌های TiO\(_2\)/Fe\(_3\)O\(_4\) به روش فلکس

5- تهیه نانوکامپوزیت‌های TiO\(_2\)/Co\(_3\)O\(_4\) به روش فلکس

6- بررسی توانایی جذب رودامین ب توسط نانوکامپوزیت‌های TiO\(_2\)/Ag\(_2\)CrO\(_4\)

فصل سوم: بحث و نتیجه‌گیری

1- بررسی نانوکامپوزیت‌های TiO\(_2\)/Ag\(_2\)CrO\(_4\) به روش فلکس

2- تفسیر نتایج حاصل از الگوهای XRD

3- بررسی طیف‌های EDX
1.3. بررسی مورفولوژی نانوکامپوزیت‌های تهیه شده با استفاده از تصاویر TEM و SEM
2.1.3. تفسیر نتایج به دست آمده از طیف‌های UV-Vis DRS
3.1.3. FT-IR تفسیر طیف‌های نانوکامپوزیت‌ها
4.1.3. تفسیر طیف‌های UV-Vis
6.1.3. بررسی تغییرات طیف UV-Vis نشان دهنده تغییرات مکانیکی فتوکانالیزوری ها تحت تأثیر نور ملنی و زمان
7.1.3. بررسی نتایج پیگیم تعمیم مساحت سطح ویژه
8.1.3. مقایسه میزان تخریب آلاینده‌های مختلف توسط فتوکانالیزور بهبوده..
9.1.3. بررسی کنترل پیگیم تخریب آلاینده‌های روی نانوکامپوزیت‌ها
10.1.3. بررسی کنترل پیگیم فتوکانالیزوری

3.2.3. بررسی مورفولوژی و ساختار نانوکامپوزیت با استفاده از تصاویر TEM و SEM
4.2.3. بررسی مورفولوژی و ساختار نانوکامپوزیت با استفاده از تصاویر TEM و SEM
5.2.3. تفسیر طیف‌های FT-IR نانوکامپوزیت‌ها

11.2.3. بررسی مورفولوژی و ساختار نانوکامپوزیت با استفاده از تصاویر TEM و SEM
12.2.3. بررسی مورفولوژی و ساختار نانوکامپوزیت با استفاده از تصاویر TEM و SEM
13.2.3. تفسیر نتایج به دست آمده از طیف‌های UV-Vis DRS

9.2.3. بررسی میزان تاریکت فتوکانالیزور
10.2.3. مکانیسم نحوه انعقاد جفت‌های الکترون-حفره در نانوکامپوزیت‌های باین ...تایی
11.2.3. بررسی اثر گروه‌های بی دام اندازه‌ای گونه‌های فعال
12.2.3. بررسی اثر مدت زمان فلافکس بر روی فعالیت فتوکانالیزوری...
13.2.3. مقایسه میزان توانایی نانوکامپوزیت (15%) برای تخریب آلاینده‌های دیگر...
14.2.3. بررسی میزان بازیافت فتوکانالیزور...

1.3. بررسی مورفولوژی نانوکامپوزیت‌های تهیه شده با استفاده از تصاویر TEM و SEM
2.3. بررسی مورفولوژی و ساختار نانوکامپوزیت با استفاده از تصاویر TEM و SEM
3.3. بررسی مورفولوژی و ساختار نانوکامپوزیت با استفاده از تصاویر TEM و SEM
4.3.3. تفسیر نتایج به دست آمده از طیف‌های UV-Vis DRS
5.3.3. بررسی نتایج حاصل از آنالیز VSM
فهرست شکل‌ها

شملار و عنوان مطالب

77- 6- بررسی فعالیت فتوکاتالیزوری نانوکامپوزیت‌ها در تخریب رودامین

78- 7- بررسی تغییرات جذب محلول رودامین با گذشت زمان در حضور فتوکاتالیزورها

79- 8- بررسی سینتیک تخریب آلیاف رودامین بر روی نمونه‌های تهیه شده

80- 9- نتایج به دست آمده از طیف‌های فتوئومینسنس

81- 10- مکانیسم نحوه انتقال جفت‌های الکترون -حفره در نانوکامپوزیت سه‌تایی

82- 11- بررسی اثر گروه‌های به دام اندازه‌دهی گونه‌های فعال

83- 12- بررسی اثر مدت زمان رفلاکس بر روی فعالیت فتوکاتالیزوری

84- 13- مقایسه میزان توانایی نانوکامپوزیت (30%) TiO₂/Fe₃O₄/CoWO₄ برای تخریب آلیاف‌های دیگر

85- 14- بررسی میزان باریافت فتوکاتالیزور

86- 15- نتیجه گیری

87- 16- پیشنهادات برای کارهای آینده

88- 17- فهرست منابع و مأخذ
شکل 1- تقسیم بندی مواد بر اساس هدایت الکتریکی.............
شکل 2- طرح شماتیک چگونگی عملکرد فتوکاتالیزورها...........
شکل 3- ساختار کرستالی بلی مورف‌های در اکسید تیتانیوم...........
شکل 4- مکانیسم انتقال الکترون در اثر نشان‌دهی نقره در سطح در اکسید تیتانیوم تحت نابش نور فرآیند........
شکل 5- مکانیسم انتقال الکترون در اثر دوب شدن نیتروژن ب در اکسید تیتانیوم تحت نابش نور مرئی........
شکل 6- نمایی از انتقال بار در نیمه هادی‌های جفت شده............
شکل 7- ساختار آلی‌پنده رنگی رودامین-B...........
شکل 8- ساختار آلی‌پنده رنگی متین بنو...........
شکل 9- ساختار آلی‌پنده رنگی فوشین...........
شکل 10- اکسید گزی XRD برای نمونه‌های AgBr/Ag₃PO₄/TiO₂ و نانوکاتالیزور AgBr/Ag₃PO₄........
شکل 11- نمودار تخته‌سازی فتوکاتالیزوری میلی‌اوازی بر حسب زمان تنش........
شکل 12- نمودار تخته‌سازی فتوکاتالیزوری میلی‌اوازی بر حسب زمان تنش........
شکل 13- شعاعی از روش تهیه نانوکاتالیزور TiO₂/Ag₃CrO₄ با روش رفلاکس........
شکل 14- شعاعی از روش تهیه نانوکاتالیزور TiO₂/Ag₃WO₄/AgBr با روش رفلاکس........
شکل 15- شعاعی از تجزیه‌استفاده شده در فرآیند فتوکاتالیزوری........
شکل 16- الگوهای نمونه TiO₂ و نانوکاتالیزورهای TiO₂/Ag₃CrO₄ و کرومات‌نقره با درصد‌های مختلف در روشهای رفلاکس........
شکل 17- طبقه‌بندی برای نمونه‌های EDX برای نمونه‌های TiO₂ و TiO₂/Ag₃CrO₄ (50%)........
شکل 18- تصویر نازک برداری عناصر برای نانوکاتالیزور TiO₂/Ag₃CrO₄ (50%)........
شکل 19- تصویر الکترونی به‌دست آمده برای نانوذرات (a) TiO₂ و (b) TiO₂/Ag₃CrO₄........
شکل 20- تصویر TEM نانوکاتالیزور (50%) TiO₂/Ag₃CrO₄........
شکل 21- تصویر UV-vis DRS برای نانوکاتالیزورهای دی اکسید تیتانیوم-کرومات نقره با درصد‌های مختلف........
شکل 22- تصویر FT-IR نمونه‌های TiO₂/Ag₃CrO₄ (50%) و TiO₂........
شکل 23- نمودار چکیده بررسی طول موج برای ترکیب رودامین-B روی نانوکاتالیزور TiO₂/Ag₃CrO₄ (50%)........
شکل 24- نمودار چکیده بررسی طول موج برای ترکیب رودامین-B روی نانوکاتالیزور TiO₂/Ag₃CrO₄ (50%)........
شکل 25- نمودار چکیده بررسی طول موج برای ترکیب رودامین-B روی نانوکاتالیزور TiO₂/Ag₃CrO₄ (50%)........
شکل 26- نمودار چکیده بررسی طول موج برای ترکیب رودامین-B روی نانوکاتالیزور TiO₂/Ag₃CrO₄ (50%)........
شکل 27- نمودار چکیده بررسی طول موج برای ترکیب رودامین-B روی نانوکاتالیزور TiO₂/Ag₃CrO₄ (50%)........
شکل 28- نمودار چکیده بررسی طول موج برای ترکیب رودامین-B روی نانوکاتالیزور TiO₂/Ag₃CrO₄ (50%)........
شکل 29- نمودار چکیده بررسی طول موج برای ترکیب رودامین-B روی نانوکاتالیزور TiO₂/Ag₃CrO₄ (50%)........
شکل 30- نمودار چکیده بررسی طول موج برای ترکیب رودامین-B روی نانوکاتالیزور TiO₂/Ag₃CrO₄ (50%)........
شکل 15-3. نتایج بررسی تداخل روزامین بر روی نانوکامپوزیت (50% TiO\textsubscript{2}/Ag\textsubscript{2}CrO\textsubscript{4}) در حضور به دام اندامده‌های مختلف

شکل 16-3. اثر مدت زمان تداخل بر روی فعالیت فتوکاتالیزور نانوکامپوزیت (50% TiO\textsubscript{2}/Ag\textsubscript{2}CrO\textsubscript{4}) با زمان‌های مختلف و (80) دقیقه

شکل 17-3. طیف‌های UV-Vis DRS نانوکامپوزیت (50% TiO\textsubscript{2}/Ag\textsubscript{2}CrO\textsubscript{4} و 50% TiO\textsubscript{2}/AgBr) در حضور به دام اندامده‌های مختلف

شکل 18-3. نمودار زمان و ایندیکس نانوکامپوزیت بر روی نانوکامپوزیت (50% TiO\textsubscript{2}/Ag\textsubscript{2}CrO\textsubscript{4} و 50% TiO\textsubscript{2}/AgBr) در حضور به دام اندامده‌های مختلف

شکل 19-3. نمودار نتایج مشاهده شده براي تداخل آلی‌نده‌های رودمین ب، ماتیل، بلو و فوشین

شکل 20-3. نمودار تداخل رودمین بر روی نانوکامپوزیت (50% TiO\textsubscript{2}/Ag\textsubscript{2}CrO\textsubscript{4}) با از 5 مدرله باریک

شکل 21-3. اکسید‌های نانوکامپوزیت‌های تداخل با استفاده از روش ریکالس

شکل 22-3. طیف‌های برای نانوکامپوزیت TiO\textsubscript{2}/Ag\textsubscript{2}WO\textsubscript{4} (10%) و TiO\textsubscript{2}/AgBr (15%) و TiO\textsubscript{2}/Ag\textsubscript{2}WO\textsubscript{4}/AgBr (15%)

شکل 23-3. تئورژن نانوکامپوزیت (50% TiO\textsubscript{2}/Ag\textsubscript{2}WO\textsubscript{4}/AgBr) و TiO\textsubscript{2}/Ag\textsubscript{2}WO\textsubscript{4} (15%)

شکل 24-3. امید برای نانوکامپوزیت (50% TiO\textsubscript{2}/Ag\textsubscript{2}WO\textsubscript{4}/AgBr) و TiO\textsubscript{2}/Ag\textsubscript{2}WO\textsubscript{4} (15%)

شکل 25-3. طیف‌های برای نانوکامپوزیت TiO\textsubscript{2}/Ag\textsubscript{2}WO\textsubscript{4}/AgBr و TiO\textsubscript{2}/Ag\textsubscript{2}WO\textsubscript{4} (15%) و TiO\textsubscript{2}/AgBr (15%) و TiO\textsubscript{2}/Ag\textsubscript{2}WO\textsubscript{4} (10%) و TiO\textsubscript{2} (15%)

شکل 26-3. طیف‌های برای نانوکامپوزیت TiO\textsubscript{2}/Ag\textsubscript{2}WO\textsubscript{4}/AgBr و TiO\textsubscript{2}/Ag\textsubscript{2}WO\textsubscript{4} (15%)

شکل 27-3. فعالیت نانوکامپوزیت‌های نانوکامپوزیت‌های تداخل بدیل شده تحت تابش نور مرئی

شکل 28-3. نمودار نتایج بررسی برای نانوکامپوزیت (50% TiO\textsubscript{2}/Ag\textsubscript{2}WO\textsubscript{4}/AgBr) و TiO\textsubscript{2}/Ag\textsubscript{2}WO\textsubscript{4} (15%)

شکل 29-3. نتایج بررسی تداخل رودمین بر روی نانوکامپوزیت (50% TiO\textsubscript{2}/Ag\textsubscript{2}WO\textsubscript{4}/AgBr) و TiO\textsubscript{2}/Ag\textsubscript{2}WO\textsubscript{4} (15%)

شکل 30-3. طیف‌های برای نانوکامپوزیت TiO\textsubscript{2}/Ag\textsubscript{2}WO\textsubscript{4}/AgBr و TiO\textsubscript{2}/Ag\textsubscript{2}WO\textsubscript{4} (15%)

شکل 31-3. ثبت شماتیک جدایی جفت‌های الکترون-حفره در نانوکامپوزیت‌های تداخل بانی

شکل 32-3. ثبت سرعت تداخل رودمین بر روی نانوکامپوزیت‌های حضور به دام اندامده‌های مختلف

شکل 33-3. اثر مدت زمان نانوکامپوزیت بر روی فعالیت فتوکاتالیزور نانوکامپوزیت (50% TiO\textsubscript{2}/Ag\textsubscript{2}CrO\textsubscript{4}) برای نانوکامپوزیت (15% TiO\textsubscript{2}/Ag\textsubscript{2}WO\textsubscript{4}/AgBr) و PL

شکل 34-3. طیف‌های نانوکامپوزیت (50% TiO\textsubscript{2}/Ag\textsubscript{2}WO\textsubscript{4}/AgBr) برای نانوکامپوزیت (15% TiO\textsubscript{2}/Ag\textsubscript{2}WO\textsubscript{4}/AgBr) و PL

شکل 35-3. نمودار نتایج مشاهده شده برای تداخل آلی‌نده‌های رودمین ب، فوشین و ماتیل اولرز

شکل 36-3. نمودار تداخل رودمین بر روی نانوکامپوزیت (4:1) TiO\textsubscript{2}/Fe\textsubscript{3}O\textsubscript{4} و (30%) TiO\textsubscript{2}/Fe\textsubscript{3}O\textsubscript{4}

شکل 37-3. اکسید‌های نانوکامپوزیت‌های تداخل با استفاده از روش ریکالس

شکل 38-3. طیف‌های برای نانوکامپوزیت (50% TiO\textsubscript{2}/Ag\textsubscript{2}WO\textsubscript{4}/AgBr) و (30%) TiO\textsubscript{2}/Fe\textsubscript{3}O\textsubscript{4}

شکل 39-3. تئورژن نانوکامپوزیت (50% TiO\textsubscript{2}/Ag\textsubscript{2}WO\textsubscript{4}/AgBr) و (30%) TiO\textsubscript{2}/Fe\textsubscript{3}O\textsubscript{4}

شکل 40-3. تئورژن نانوکامپوزیت (50% TiO\textsubscript{2}/Ag\textsubscript{2}WO\textsubscript{4}/AgBr) و (30%) TiO\textsubscript{2}/Fe\textsubscript{3}O\textsubscript{4}

شکل 41-3. طیف‌های برای نانوکامپوزیت (50% TiO\textsubscript{2}/Ag\textsubscript{2}WO\textsubscript{4}/AgBr) و (30%) TiO\textsubscript{2}/Fe\textsubscript{3}O\textsubscript{4}

شکل 42-3. منحنی مغناطیسی برای نانوکامپوزیت (50% TiO\textsubscript{2}/Ag\textsubscript{2}WO\textsubscript{4}/AgBr) و (30%) TiO\textsubscript{2}/Fe\textsubscript{3}O\textsubscript{4}
فهرست جداول

<table>
<thead>
<tr>
<th>شماره و عنوان مطالب</th>
<th>صفحه</th>
</tr>
</thead>
<tbody>
<tr>
<td>جدول 1.1 – مشخصات فیزیکی و ساختاری فازهای کریستالی مختلف دی اکسید تیتانیوم</td>
<td>16</td>
</tr>
<tr>
<td>جدول 1.2 – مقدار موارد نیاز برای تهیه درصدهای وزنی مختلف از نانوکامپوزیت TiO₂/Ag₂O/CoWO₄ (30%)</td>
<td>31</td>
</tr>
</tbody>
</table>
جدول 2- مقاّدیر مواد مورد نیاز برای تهیه درصد‌های وزنی مختلف از نانوکامپوزیت

جدول 3-4 مقاّدیر مواد مورد نیاز برای تهیه درصد‌های وزنی مختلف از نانوکامپوزیت

جدول 1.1- درصد‌های وزنی تجربی و محاسباتی عناصر نانوکامپوزیت (50%)

جدول 2.3- خواص نمونه‌های TiO2 و TiO2/AgCrO4 (50%)
فصل اول:
مقدمه
1-1 مقدمه

آلودگی محیط زیست یکی از جالش برانگیزترین معضلات جهان امروز می‌باشد. از مهم‌ترین این آلودگی‌ها، می‌توان به آلودگی آب اشاره کرد که با توجه به کمیت متانت آب شیرین کره زمین توجه بسیاری از دانشمندان را به خود جلب کرده است. امروزه محققین تمام تلاش خود را برای تحقیق‌های آب‌های آشامیدنی و پساب‌ها به کار می‌گیرند. یکی از راه‌های حذف آلودگی آب ناشی از رنگ‌های آب استفاده از فرآیندهای فتوکاتالیزوری به منظور تجزیه مواد سمی و تبدیل آنها به مواد غیر مضر نظر می‌باشد. گزارش‌های موجود نشان دهند که استفاده از فتوکاتالیزورها فعالیت آب۲ و CO۲ تحت تابش نور خورشید به ویژه در کشورهای توسعه‌یافته در حال تبدیل شدن به فناوری اصلی در تصفیه آب است. فناوری نانو با ایجاد روش‌کردنی نوین در فرآیندهای فتوکاتالیزوری، آینده‌ای بسیار روشن را در این زمینه نوید می‌دهد.

1-2 آب

آب یکی از مهم‌ترین و بنیادی‌ترین عامل حیات موجودات زنده است. از دیدگاه جمعیت کره زمین و ارتقای سطح زندگی، باعث نصف‌آوردن بیشتری و افزایش سطح مصرف آب می‌شود در حالی که منابع آب شیرین جهان در بهترین حال نبود و حتی رو به کاهش است. آب در فعالیت‌های مختلف انسان از قبیل کشاورزی، مصارف خانگی، صنعت و تولید انرژی به‌کار می‌رود که همراه با هر یک از این فعالیت‌ها انواع مختلفی از آلودگی‌ها و ترکیبات آلاینده وارد آب می‌شود. امروزه سرعت توسعه صنایع چنین بالا است که اغلب تنها بعد اقتصادی آن‌ها در نظر گرفته شده و توجه به پیامدهای زیست‌محیطی آن نمی‌شود. یکی از عمده‌ترین منابع آلاینده‌ی محیط زیست پساب‌های صنعتی می‌باشد که تهدید جدی برای سلامت...
موجودات زندگی به شمار می‌رود. حفاظت از منابع طبیعی آب و توسه‌های فناوری های جدید برای تصفیه آب و فاضلاب، یکی از مسائل مهم زیست محیطی قرن بیست و سوم می‌باشد.

1- رنگ‌ها و نگرانی زیست محیطی

آلاینده‌های مختلفی، اعم از ترکیبات آلی و معدنی موجب ایجاد آلودگی آب‌ها می‌شوند که در این میان، رنگ‌ها گروهی از مواد آلی پیچیده هستند که در نتیجه تصور مختلف، نظر رنگری به محیط زیست وارد می‌شوند. صنایع نساجی و رنگری یکی از بزرگ‌ترین صنایع مصرف کننده آب و تولید کننده‌ی کننده گان مقدار قابل توجهی پساب به شمار می‌رود (Moussavi & Mahmoudi, 2009; Barka et al, 2011). وجود مواد رنگ‌زای آب در این پساب‌ها به علت جلوگیری از نفوذ نور به داخل آب و اخلال در عمل فتوستاتز و اثرات سری‌ان آنها آسیب‌های جیران ناپذیری به محیط زیست وارد می‌نماید. رنگ‌های آب از جمله رنگ‌های پرکاربرد در صنایع نساجی هستند (Bizani et al, 2006). از آن‌چه که رنگ‌های آب مولکول‌هایی غیرقابل تجزیه، مقاوم به هضم هوازی و پایدار در برابر نور، گرمگرما و عوامل اکسید کننده‌ی آن باشند، لزومی تصمیم‌گیری چنین آلاینده‌هایی امری اجتناب نابی‌یار است (Nidheesh et al, 2013). در ضمن، به دلیل ساختار شیمیایی این رنگ‌ها، فرآیندهای بیولوژیکی قادر به تصمیم‌گیری آنها نیستند و فرآیندهای تصمیم‌گیری متداول از قبیل چرب سطحی، انعقاد و لخته‌سازی نیز روش مناسبی نمی‌باشد، زیرا این روش‌ها به طور عمده به‌پاسه‌های جامدی تولید می‌کند که ممکن است مشکلات زیست محیطی دیگری به دنبال خواهد داشت. روش‌های مختلف فیزیکی - شیمیایی نظیر اولترا فیلتراسیون، اسپرم مکروس، تبادل بونی و جذب روز مواد مختلف نظیر کربن فعال، زغال، ترش‌های جوپ و سبیکاژل به منظور حذف رنگ نیز از موفقیت‌ها نسبی برخودار است. ولی از آنجا که روش‌های مذکور، تنها آلودگی را از فاز آبی به شبکه (Dawood et al, 2014; Mekasu wandumrong et al, 2010), جامد منتقل می‌کند، فرآیندهای تخربی نیستند. گاهی نثری‌ها در مورد این پساب‌ها و نیز استانداردهای بین المللی محیط زیست، منجر به توسعه روش‌های جدید در تصفیه رنگ‌زایی و تبدیل آنها به مواد ضرر شده است. (Abo-Farha, 2010). افزایش نگرانی‌ها در مورد این پساب‌ها و نیز استانداردهای بین المللی محیط
فناوری نانو به معنی مهندسی مواد در ابعاد اتمی- مولکولی و ساخت مواد در ابعاد نانوی است. در این مقياس خواص فیزیکی - شیمیایی و زیستی تکنیک سیستم با خواص تودهای کاملاً متفاوت است (رحمانی اهر نجاتی و همکارانش، 1388). امروزه فناوری نانو به یک جزء تفکیک نابی‌در از فناوری‌های آینده بشار تبدیل شده است. این فناوری در محيط زیست نیز از جایگاه ویژه‌ای برخوردار است. فناوری نانو با دنبالی ذرات ریز مقياس نامرئی سروکار دارد که این ذرات تانومواد نامیده می‌شوند. هدف نانو فناوری این است که به اتم‌ها بگود چطور خودشان را مرتب کند و چگونه رفتار کند می‌باشد از خواص یک ماده قابل کنترل گردد.

1-4 فناوری نانو

در صالح‌های اخیر استفاده از فرانده‌های اکسیداسیون پیشرفت‌های برای تصویفی پساب‌های صنعتی رشد چشمگیری نموده است. فرانده‌های اکسیداسیون پیشرفت‌ه، قادر به تصویفی پساب‌های هستند که حاوی مواد سمی، مقاوم و غیر قابل تجزیه می‌باشند. اکسیداسیون پیشرفت‌ه به مبنای یک گروه ذرات بسیار واکنش‌پذیر مانند رادیکال‌های هیدروکسیل (E°= 2.8 eV) که محدوده وسیعی از آلی‌های رو به صورت غیرانتخابی اکسید می‌نمایند استوار است (Hassaan & El Nemer, 2017). روش‌های اکسیداسیون به دو روش (الف) اکسیداسیون شیمیایی با استفاده از مواد اکسیداگندن نظیر اشعه فرانلفش، آب اکسیژن، معرف فنتن، (ب) فرانده‌های اکسیداسیون پیشرفت‌ه شامل کاربرد ازون، آزون - اشعه فرانلفش، آزون - آب اکسیژن، آزون - آب اکسیژن - اشاعه فرانلفش، آب اکسیژن - اشاعه فرانلفش، دی اکسید تیتانیوم - اشعه فرانلفش می‌باشد. دلیل نام‌گذاری این فرانده‌ها به نام فرانده‌های اکسیداسیون پیشرفت‌ه تولید رادیکال‌های هیدروکسیل است که تمام تركیبات آلی را به دی اکسید کردن و آب اکسید می‌کند. تولید‌ده اکسید کردن در تصویفی پساب از اهمیت زیادی برخوردار است، زیرا

1-Advanced Oxidation Processes (AOPs)
2-Fenton’s reagent
شناسکر تخریب کامل ترکیبات آلی در آب می‌باشد. در میان فرآیندهای اکسیداسیون پیشرفته، فتوکاتالیزورها ناهمگن به عنوان یک روش موفق برای تجزیه انواع اپیندهای آلی به‌کار برده می‌شوند.

۱-۶- فتوکاتالیزور

کلمه فتوکاتالیزور ترکیبی از دو واژه فتو و کاتالیزور می‌باشد که این ماده به معنا نور و کاتالیزور مادهی است که فرآیند واکنش را سرعت می‌بخشد بدون اینکه خودش در این واکنش مصرف شود. فتوکاتالیزورها به طور عمده اکسیدهای شیمی‌رسان هستند که تحت تاثیر نور، با انتزاع کافی فعال می‌شوند (Zhang et al., 2005). کلروفیل در گیاهان مشابه فتوکاتالیزورها عمل می‌کند. در مقایسه با فتوسنتز که در آن کلروفیل نور خورشید را جذب کرده و توسط آب و کربن دی اکسید، اکسیژن و گلوكز تولید می‌کند، در فرآیند فتوکاتالیزوری مواد آلی در حضور نور، آب و کاتالیزور به کربن دی اکسید و آب تبدیل می‌شود (Soltaninezhad & Aminifar, 2011). از فتوکاتالیزورها در تصمیم‌گیری آب کاهش آلیده‌های خاص و هم‌چنین تصفیه‌های شهر به‌طور کلی کاهش غلظت آلیده‌های مضر احتمال سوخت-های فسیلی استفاده می‌شود. فتوکاتالیزورها دارای خصوصیات خود ترکیب‌سازی، ضد باکتری، جذب و تخریب بوهای بد و اثر ضد بخار می‌باشند. کاربردهای اصلی فتوکاتالیزورها عبارتند از: حذف و تخریب رنگ‌ها، معدنی سازی ترکیبات آلی خطرناک، تخریب مواد معلول خطرناک از قبل ساییده‌ها، تصفیه فلزات سنگین، تجزیه قارچ‌کش‌ها، علف‌کش‌ها و حشره‌کش‌های مضر، تصفیه و گندزدایی آب، تخریب ترکیبات بد مانند آلودگی زیست‌خانه، تصفیه و آلودگی بیماری‌های محیط‌محیت‌های بیمار و تخریب سلول‌های سرطانی و ویروس‌ها می‌باشد. امروزه از نیمه‌رسان‌های دست‌پارچه کاتالیزور در فرآیندهای فتوکاتالیزوری ناهمگن استفاده می‌شود.

۱-۶-۱- مزایای فتوکاتالیزورها
1) فتوکاتالیپروره با عنوان یک جانشین مناسب برای سیستم‌های متداول تصفیه با مصرف انرژی بالا پیشنهاد می‌شود که قابلیت استفاده از انرژی پاک و تجدید شدنی خورشید را دارا هستند.

2) برخلاف روش‌های متداول تصفیه که آلانده ها را از یک شکل به شکل دیگر تبدیل می‌کنند، فتوکاتالیپرورها باعث تشکیل محمولات به ضرر می‌شوند.

3) این فرآیند را می‌توان برای تجزیه ترکیبات خطرناک موجود در انواع فاضلاب‌ها مورد استفاده قرار داد.

4) این فرآیند را می‌توان برای تصمیم‌گیری فازهای مایع، گازی و جامد (خاک) به کار برد.

5) شرایط واکنش فتوکاتالیپرورها متعادل بوده و به زمان واکنش نسبتاً گوتاه و مواد شیمیایی کمتری نیاز دارد.

6) این فرآیند را می‌توان برای بازیافت فلزات و یا تبدیل آنها به حالات فلزی غیر سمی یا با سمت کمتر استفاده نمود.

7) از جمله مزیت مهم واکنش‌های فتوکاتالیپروری، انجام واکنش در دمای اناق و فشار معمولی می‌باشد.

1-6-2- فتوکاتالیپرورهای ناهماهنگ

ذرای کاتالیپرور ناهماهنگ به راحتی در محیط واکنش حل نمی‌شوند. برخلاف کاتالیپرورهای همگن، کاتالیپرورهای ناهماهنگ به راحتی از مخلوط واکنش جدا می‌شوند و منجر به ناخالصی محمولات نمی‌گردد. فلزات واسطه جدول تناوبی رایج ترین کاتالیپرورها هستند (Polshettiwar & Varma, 2010).

1-7- خصوصیات فتوکاتالیپرورها

نیمه‌رساناهاپی که به عنوان فتوکاتالیپرور مورد استفاده قرار می‌گیرند با دارای خصوصیات ویژه‌ای از قبیل شکاف انرژی مناسب، پایداری قابل قبول در مقابل نور، غیر سمی بودن و ارزان بودن باشند. فتوکاتالیپرورها با یک در مقابل خورده‌گی نوری مقاوم بوده و تحت انواع شرایط واکنش پایدار باشند. از طرفی
بايد به هنگام استفاده مجدداً از آن‌ها راندمان و اکتش مطلوب باشد. در بین فتوکاتالیزرها دی اکسید تیتانیوم را ریج ترین و مرسوم ترین ماده‌ای است که به عنوان فتوکاتالیزر مورد استفاده قرار گرفته است.

1-8 نیمهرسانای نظریه نوار اولین بار توسط باخ و مطرح گردید. طبق این نظریه اوربیتال‌های مولکولی هم انرژی در یک مولکول تشکیل نواحی ارزنی و می‌دهند. بر این اساس، با این ترین نوار انرژی که خالی از الکترون می‌باشد، نوار هدایت و بالاترین نوار انرژی که دارای الکترون می‌باشد، نوار ظرفیت نامیده می‌شود. به فاصله انرژی بین نوار ظرفیت و نوار هدایت در یک ماده، شکاف نوار انرژی اطلاق می‌گردد. همان طور که در این شکل دیده می‌شود، در فلزات این نوار با هم هم پوشانی دارند. بنابراین فرآیند حتی در شرایط عادی نیز دارای هدایت الکتریکی می‌باشند. اما فاصله زیاد انرژی بین دو نوار ظرفیت و هدایت در مواد عایق، باعث نارسانی شدن این مواد از نقطه نظر الکتریکی می‌گردد. در مورد مواد نیمه رسانا، شکاف نوار انرژی به اندازه‌ای است که این مواد در شرایط معمولی رسانای نمی‌باشند. در صورتی که با اعمال مقداری انرژی به روشهای مختلف مانند تابش نور، دادن حرارت و ایجاد شوک‌های الکتریکی رسانای چرخان الکتریسیتی می‌شوند.

1-Semiconductor
2-Bach
3- Conduction Band (CB)
4-Valence Band (VB)
شکل 1-1- تقسیم‌بندی مواد بر اساس هدایت الکتریکی

1-8-1. تحريك نوری شکاف انرژی نیم‌هارسانا

فرآیند اولیه برای فتوکالیزی، ترکیبات آلی و معدنی به‌وسیله نیم‌هارسانا، تولید زوج‌های الکترون-حفره در ذرات نیم‌هارسانا می‌باشد. قسمت برزگ‌نماکی شده شکل (1-2) تحريك یک الکترون از نوار ظرفیت به نوار هدايیت به‌کمک جذب نور با انرژی برابر یا بزرگ‌تر از شکاف نوار نیم‌هارسانا را نشان می‌دهد. بعد از تحريك، سرنوشت حفره و الکترون جدا شده در چندین مسیر رقم می‌خورد. شکل (1-2) بعضی از مسیرهای آسیب‌برای الکترون‌ها و حفره‌ها را نشان می‌دهد. انتقال الکترون و حفره‌ها به گونه‌ی های آلی و معدنی یا مولکولی های خلا جذب شده، از انتقال الکترون‌ها و حفره‌ها به سطح نیم‌هارسانا نتیجه می‌شود. اگر گونه‌ها را سطح نیم‌هارسانا پیش جذب شوند، فرآیند انتقال الکترون مؤثرتر است.

الکترون‌های رسیده به سطح باعث کاهش یک پذیرندی الکترون (معمولاً اکسیژن در یک محلول هوادی شده) می‌شود (مسیر 1)، در صورتی که حفره‌های مهاجرت نموده به سطح، باعث اکسایش یک دهندی الکترون می‌شود (مسیر 2). امکان انجام و سرعت فرآیندهای انتقال برای الکترون‌ها و حفره‌ها به موقعیت نسبی نوارهای هدايیت و ظرفیت و سطح پتانسیل رسیدن ردوکس گونه‌های جذب شده برگزاری دارد. ترکيب مجدد الکترون و حفره با انتقال برای گونه‌های جذب شده رقابت می‌نماید. این فرآیند می‌تواند در توده (مسیر 4) یا در سطح (مسیر 3) نیم‌هارسانا با آزاد نمودن گرم انجام گیرد. بازدهی فرآیند فتوکالیزی (پاژدهی کوانتومی) به صورت تعداد بی‌پیدایی یک فتوکالیزی رخ داده بر تعداد فتوتکانیات یک جذب شده تعريف می‌شود (Nosaka & Fox، 1988). واضح است که ترکیب مجدد الکترون و حفره باعث کاهش پازدهی فرآínد فتوکالیزیوری می‌شود. بنابراین برمی از روش‌های به‌هم‌آمیز می‌توان نیم‌هارسانا نظیر افزایش فلزات و ترکیب با نیم‌هارساناهای دیگر به عنوان روشنی مؤثر، در کاهش پازدهی حامل‌های بار و افزایش پازدهی فتوکالیزیور مفید است.
به مواضع طبیعی و مصنوعی ساخته شده در صنعت که ابعاد آن‌ها در یک راستا کوچک‌تر از صد نانومتر باشند نانوذره اطلاق می‌شود. مواد مختلف در این مقیاس از خود خواص مختلف و جالبی را پرور می‌دهند. توانایی ساخت و کنترل ساختار نانوذرات به دانشمندان و مهندسین امکان تغییر خواص و طراحی خواص مطلوب را می‌دهد. با کاهش اندازه ذرات (و همین‌طور ماده)، امکان تغییر برخی ویژگی‌های ماده وجود دارد. ذرات در ابعاد نانو به دلیل نسبت بالای سطح به حجم، ویژگی‌های جدید و منتفی‌ای از خود نشان می‌دهند. این ویژگی‌های مشخص به فرد طیف گسترده‌ای از کاربردی‌ها را ممکن ساخته و باعث شده است تا از آن‌ها در بسیاری از مطالعه‌های زیست‌محیطی، دارویی، بیشک، غذایی، بسته‌باندی، کشاورزی، آرایشی، بهداشتی و استفاده شود. همچنین این ویژگی عامل مهمی برای استفاده در کاتالیزورها می‌باشد.
1-10. روش‌های تولید نانوذرات

به طور کلی دو روشکرد با هم پایین و پایین به هم پایان برای سنتز نانوذرات به کار می‌روند:

در روشکرد با هم پایین یک ساختار میکروی شکل میلیاردها اتم را کوچک می‌کند تا به ساختار نانو
برسد. در حقيقة در این روش، یک ماده بزرگ را برداشتی و با کاهش ابعاد و شکل دهی آن، به یک
محلول با ابعاد نانو تبدیل می‌شود. اشکال این روش، مصرف زیاد مواد و انرژی و محدودیتهای فیزیکی
است. این روش شامل فرآوری مکانیکی، الیتروگرافی، فرآوری حرارتی و ریسندگی می‌باشد.

در روشکرد پایین به همراه محلول از مواد ساده‌تر به وجود می‌آید. در حقيقة کاری که در این روش انجام
می‌شود، گفتار به قرار دادن انرها و مولکولها (که ابعاد کوچکتر از میقاس نانو دارند) برای ساخت یک
محلول نانومتری است. معمولاً روش‌های پایین به هم پایان این ضایعاتی ندارند. این روش شامل رسوب‌دهی از فاز
ماهی، قوس الکتریکی (پلاسمای)، روش سل-زل، رسوب دهی فاز گاز و کامبوزیت کردن نانوساختارها می-
باشد.

1-11. نانوذرات مغناطیسی

نانوذرات مغناطیسی به دو مایت مستقل و با ابعاد حداقل ۱۰۰ نانومتر و دارای عناصر
مغناطیسی گفته می‌شود. این ذرات دارای ویژگی‌های فیزیکی و شیمیایی به نظریه هستند که به طور
چشمگیری متفاوت از حالت توده‌ای مواد است. در بین انواع نانوذرات، ذرات مغناطیسی به دلیل
جدانسازی آسان با یک میدان مغناطیسی خارجی و ظرفیت بالای آنها برای استفاده در زمینه‌های
گوناگون مانند تولید مواد پیشرفته، بزشکی، شیوه‌های تشخیص، انرژی و مواد غذایی، بیشترین توجه را
به خود جلب کرده‌اند. عموماً نانوذرات مغناطیسی حاوی عناصر مغناطیسی مانند آهن، کبالت، نیکل و

(Chuckcharski, 2012).

1-Top-Down
2-Bottom-Up
1-12-1. روش‌های شناسایی نانوذرات

تعیین مشخصات نانوذرات برای کنترل سنتز و کاربرد آنها ضروری است. خواص این ترکیبات با استفاده از روش‌های گوناگونی نظیر میکروسکوب‌های الکترونی، پراش پرتو X (XRD) و پراش انرژی پرتو (EDX) X سنجیده می‌شود.

1-12-1. میکروسکوب‌های الکترونی

در میکروسکوب الکترونی به‌جای نور از پرتو الکترونی استفاده می‌شود. میکروسکوب‌های الکترونی دو نوع می‌باشند. نوع اول میکروسکوب الکترونی روبشی ۹ نامیده می‌شود. در این نوع میکروسکوب الکترونی به سطح نمونه تابیده می‌شود و منعکس می‌گردد و سپس توسط دنیک‌ها جمع اوری شده و تبدیل به تصویر می‌شود. به عبارت دیگر این نوع میکروسکوب فقط از ساختار سطحی تصویر می‌دهد.

نوع دوم میکروسکوب الکترونی عبوری ۲ می‌باشد. در این نوع میکروسکوب شعاع الکترونی از نمونه عبور می‌کند. این نمونه‌ها از ساختار داخل نمونه تصویر گرفته شود. در نتیجه الکترون با یکدیگر شتاب و انرژی پیش به‌این داشته باشد. برای این نوع مشخصه‌هایی نمونه‌ها، نمونه‌ها باید پسپار بالایی داشته باشند. برای این نوع مشخصه‌هایی نمونه‌ها با یکدیگر نازک باشند تا الکترون بتواند از آنها عبور نموده و از ساختار داخل آنها تصویر ایجاد کند. در نتیجه آماده سازی نمونه برای کار با یک کاربرد SEM مشکل و دقیقی می‌باشد و هزینه کار با بررسی می‌شود. با این‌ها یک چند برای TEM می‌باشد. سطوح نمونه‌ها که با TEM چند یا برای SEM مشکل و دقیقی می‌باشد و هزینه کار با بررسی می‌شود. با این‌ها یک چند برای TEM می‌باشد. سطوح نمونه‌ها که با TEM چند یا برای SEM مشکل و دقیقی می‌باشد و هزینه کار با بررسی می‌شود. با این‌ها یک چند برای TEM می‌باشد. سطوح نمونه‌ها که با TEM چند یا برای SEM مشکل و دقیقی می‌باشد و هزینه کار با بررسی می‌شود. با این‌ها یک چند برای TEM می‌باشد. سطوح نمونه‌ها که با TEM چند یا برای SEM مشکل و دقیقی می‌باشد و هزینه کار با بررسی M
در زمینه میکروسکوپی ایجاد گردیدند. این میکروسکوپها با قدرت تفکیک بالا، امکان مطالعه در زمینه علم مختلف از جمله بیولوژی، فیزیک، پزشکی، نانو و ... را میسر نمودند.

1.2- طیف سنگین پراش انرژی پرتو ایکس

انالیز EDX یک روش نیمه کمی برای تعیین درصد عناصر موجود در نمونه‌های جامد می‌باشد. این روش مبنی بر برهمکنش پرتوهای الکترونی می‌باشد. اشکارسازی‌هایی که در این روش برایشناسی عناصر به کار می‌رود نیمه‌هایی از جنس سیلیکون یا زرمانیوم‌پوشیده می‌باشند. سیلیسم معمولاً دارای مقداری بور به صورت ناخالصی است که باعث به وجود آوردن لایه ظرفیتی سیلیسم می‌گردد. این کمیت الکترون سیلیسم را رسانا می‌کند. نحوه قرار گیری این اشکارسازها به این صورت می‌باشد که به ترتیب سیگنال‌ها را جذب کند. این فرآیند با پردازش اشعه ایکس تولید شده امکان شناسایی طبقی از عناصر موجود در نمونه را به ما می‌دهد. میکروسکوپ‌های الکترونی مجزه به سیستم EDX می‌باشد که به صورت همزمان، تصویری از نمونه و امکان شناسایی عناصر یا فازهای مختلف نمونه را به ما می‌دهد. از طرفی این دو ابزار در خلاه بالا و محیطی به دور از رطوبت عمل می‌کند. تأثیر پرتو الکترونی بر بازی گرفتن تصویر و آنالیز‌عناصری مناسب تولید کننده در این میکروسکوپ‌ها برخوردار پرتو الکترونی با نمونه منجر به تولید سیگنال‌هایی خواهد شد که شامل الکترونهای تاناهوی الکترونهای برگشتی و پرتوی ایکس خواهد بود. پرتو ایکس معمولاً زمانی تولید می‌شود که پاره‌هایی از الکترونی اولیه سپری شده‌اند و الکترون داخلی رنگ‌یافته‌ای اس‌های بود. الکترون‌هایی به‌طور اتمی این جای خالی را بر خواهد گردید. اما با این عمل از الکترونهای پراش‌برونی پرتو ایکس سطح خواهد شد که انسوزی این پرتو به تفاوت در انرژی‌های ورودی‌الهای الکترونهای مورد بحث بستگی خواهد داشت. پرتو به K زمانی تولید خواهد شد که الکترون از لایه K رانده می‌شود و الکترونی از لایه L این جای خالی را پر می‌کند. پرتو ایکس تولید شده از الکترونهایی که بر اساس نسبت به رازهای L و M الکترونهایی لایه M به دلیل دور بودن از هسته، همیشه از الکترونهای نیست. 1- Energy Dispersive X-Ray Spectroscopy (EDX)
خواهدن داشت. در آنالیز به روش EDX پرتوهای ایکس عناصر بر حسب عدد اتمی شان از کم به زیاد قرار گرفته و به همین ترتیب از تفسیر سیگنال‌های پرتو ایکس تولید شده می‌توان عناصر موجود در نمونه را به صورت نیمه کمی شناسایی کرد.

1-12.3 پرداش اشعه ایکس

روش پرداش پرتو ایکس از آن جهت که روش مستقیمی برای تعیین نوع فازها و ساختار بلوری مواد است، بسیار اهمیت دارد. با استفاده از الگوی XRD یک ساختار بلوری می‌توان اندازه‌گیری تقیبی ذرات تشکیل دهنده بلور را محاسبه کرد. به این منظور می‌توان رابطه شرح را به کار گرفت:

\[D = \frac{k \lambda}{\beta \cos \theta} \]

\[\beta \lambda X \]

در این رابطه \(D \) میانگین اندازه‌بندی ذرات بر حسب \(\theta \) تابیتی برای \(k \) (nm) طول موج اشعه \(\lambda \) به این پیک در نصف ارتفاع بر حسب رادیان و \(\theta \) نیز زاویه‌ی پرداش بر حسب رادیان می‌باشد.

1-13.1 مکانیسم فرآیندهای فتوکاتالیزوری

فرآیندهای فتوکاتالیزوری در نیمه‌های‌ها با تاسیس‌نور با انرژی‌یا با پیش‌تر از شکاف انرژی نیمه‌های آغاز می‌شوند. به این ترتیب تعدادی الکترون از خاکی‌طرفی به لایه‌ی گیری در نتیجه در لایه‌ی گیری تعدادی حالت اشغال نشده از الکترون به وجود می‌آید که حفره‌ی نامیده‌ی میشود و در لایه‌ی هیدا بودی تعدادی الکترون قرار می‌گیرد. این حامل‌های بار تولید شده می‌توانند با ترکیب شوند اما درصد کمی از این‌ها به سطح نیمه‌رسانا منتقل شده و واکنش‌های فتوکاتالیزوری را شروع می‌کنند.

1-14.1 بررسی سیستمیک فرآیندهای فتوکاتالیزوری

1-14.1.1 مدل سیستمیکی لانگمیور- هینشلودود
سینتیک‌یک اکثر واکنش‌های فتوکاتالیزی ناهمگن از مدل لانگوری- هیئلود تبعیت می‌کند. اگرچه
این مدل برای تشریح واکنش‌های گاز- گاز توصیه داده شده است، ولی به‌طور گسترده‌ای برای واکنش-
های جامد- مناسب هم استفاده می‌شود. در این مدل به عنوان کسر پوشش سطح با غلظت ماده‌ی جذب
\[\theta = \frac{KC}{1+KC} \]
شونده متناسب است.

(2-1)

ثابت تعادل مربوط به پدیده جذب و واژذب می‌باشد (حیبیبی ینگچه، 1389). سرعت واکنش
در اینجا \(K \) ثابت تعادل مربوط به پدیده جذب و بر اساس مدل متناسب با \(\theta \) بوده و برای است با:

\[R = -\frac{dC}{dt} = k, \theta = k, \frac{KC}{1+KC} \]

(3-1)

در این رابطه \(k \) ثابت سرعت واکنش است.

1-1.2- سینتیک مرتبه اول

اگر از معادله‌ی بالایی انگرال گرفته شود رابطه‌ی زیر به دست می‌آید:

\[\text{Ln} \frac{C}{C_0} + KC(C_0 - C) = k_r Kt \]

(4-1)

رابطه‌ی فوق مجموع معادله‌ی درجه‌ی صفر و درجه‌ی یک است و سهم آنها برای واکنش کلی به
غلظت اولیه‌ی \(C_0 \) خیلی کوچک باشد، معادله‌ی فوق به صورت زیر در می‌آید:

\[\text{Ln} \frac{C}{C_0} + KC = k_{obs} \cdot t \]

(5-1)

بنابراین با رسم نمودار \(LnC/C0 \) نسبت به زمان ثابی یک خط مستقیم به دست می‌آید که شیب آن نشان
دهنده‌ی ثابت سرعت ظاهری مرتبه اول است (حیبیبی ینگچه و پورمحمدی اهدادی، 1393).

1-1.5- دی اکسید تیتانیوم

از بین نیمه‌های مختلف، دی اکسید تیتانیوم به دلیل دارا بودن قابلیت‌های مختلفی مانند
قدرت اکسیداسیون قوی، زیست سازگاری، خواص ضد میکروبی، مقاومت به خوردگی در انواع محیط‌های
خورنده، خاصیت فتوکاتالیزوری بالا و غیر سمی بودن در گسترده و سیعی از علوم کاربرد یافته است. به علاوه این ماده کاربردهای وسیعی در سطوح خود تمیز شوند، خاصیت ضد به گرفتگی، تصمیف آب و هوای حسگرها از گازی، مصرف دارویی و بیشکی، بازی های لیتویی، فتوولتاینیک و صنعت نساجی دارد.

1-15.1- خواص ساختاری دی اکسید تیتانیوم

دبی اکسید تیتانیوم یا برای این سه فاز بلوری آنانات، روتویل و بروکیت می‌باشد. این تیتانیوم در هر سه ساختار ماده‌ای دی اکسید تیتانیوم در یک هشت وچه‌ی با شش اتم اکسیژن دیگر در تماس است. تفاوت این سه فاز در نحوه آرایش این هشت وچه‌ی ها می‌باشد. شکل (1-3) سولول واحد هریک از این فازها را نشان می‌دهد. به لحاظ ترمودینامیکی روتویل پایدارترین فاز TiO_2 در فشار معمولی بوده و دو فاز دیگر فازهای نیمه‌پایدار این سیستم می‌باشد (Murugan et al., 2006; Yang et al., 2003; Li et al., 2004). اهمیت فازهای آنانات و روتویل از نظر کاربردی بیشتر از فاز بروکیت می‌باشد. بروکیت در مقایسه با دو فاز دیگر ساختاری کمیاب در طبیعت است و سنن‌آ در آزمایشگاه بسیار دشوار می‌باشد. همیش دلیل اطلاعات زیادی در مورد خواص بروکیت خالص در دسترس نیست. خواص فیزیکی آنانات، روتویل و بروکیت در جدول (1-1) ارده شده است. فازهای آنانات و روتویل فعالیت فتوکاتالیزوری دارند. آنانات به دلیل مساحت سطح بالا، بازتکیه پایین زوج‌های الکترون-حفره و از همه مهم‌تر به دلیل داشتن پنتاسیل احیای بالاتر نسبت به روتویل فعالیت فتوکاتالیزوری بیشتری دارد.

![schema](https://example.com/schematics)

1-Anatase
2-Rutile
3-Brookite
وفاکر و تیتر یا

جدول 1-1-مشخصات فیزیکی و ساختاری فازهای کریستالی مختلف دی اکسید تیتانیوم

<table>
<thead>
<tr>
<th>ساختار کریستالی</th>
<th>برودکت</th>
<th>آنتاز</th>
<th>فازهای کریستالی ماده دی اکسید تیتانیوم</th>
</tr>
</thead>
<tbody>
<tr>
<td>روتاتل</td>
<td>3</td>
<td>3/13</td>
<td>3/2</td>
</tr>
<tr>
<td>405</td>
<td>380</td>
<td>390</td>
<td>(eV)</td>
</tr>
<tr>
<td>2/903</td>
<td>2/7</td>
<td>2/49</td>
<td>(nm)</td>
</tr>
<tr>
<td>4/26</td>
<td>4/133</td>
<td>3/84</td>
<td>(g/cm^3)</td>
</tr>
<tr>
<td>تترافونال</td>
<td>اورتوموبیک</td>
<td>تترافونال</td>
<td>ساختار کریستالی</td>
</tr>
</tbody>
</table>

1-15-2-کاربردهای دی اکسید تیتانیوم

1-15-2-1-استفاده از فتوکاتالیزورهای ناهنگی برای تولید هیدروژن

حدود بودن سوخت‌های فسفیلی و مشکلات زیست‌محیطی ناشی از سوخت‌های آن‌ها موجود گسترش تحقیقات در مورد استفاده از سوخت‌های جایگزین شده است. هیدروژن به عنوان سوخت پاک مناسب‌ترین ترکیب برای جایگزین سوخت‌های فسفیلی به نظر می‌رسد و از این رو روش‌های مختلف تولید آن به سرعت در حال گسترش می‌باشند. استفاده از فناوری‌های نوین به خصوص فناوری نانو در راستای کاهش اثرات سوی آلودگی‌های زیست‌محیطی، به عنوان یکی از راهکارهای مدیریتی مطرح می‌باشد. یکی از مواردی که این فناوری کاربرد خود را نشان می‌دهد در ارتباط با انرژی‌های تمیز می‌باشد که در نظر گرفتن جالش‌های پیش رو ضرورت استفاده از آن را بر رنگ‌تر نموده است. در سال 1972، فوجی شیما و هوندا موفق شدند با استفاده از آند دی اکسید تیتانیوم و تابش نورفرانسکش، آب را تجزیه کنند. در این پژوهش از دی اکسید تیتانیوم به عنوان آند و از الکترود بلاتین به عنوان کاند استفاده

1-Fujishima
2-Honda
کردند. وقتی دی اکسید تیتانیوم تحت تأثیر نور فرابنفش قرار گرفت، ضمن جذب انرژی، جفت‌های الکترون-حفره در آن ایجاد شد. الکترون‌های تولید شده در الکترود مقابل، سبب کاهش آب به هیدروژن شدند و حفره‌ها آب را به اکسیژن اکسید کردند (Hashimoto et al., 2005). از آن پس، فتوکاتالیزورهای نیمه‌هادی توجه زیادی را به خود جلب کردند. به طوری که بسیاری از دنیاب در این روش برای تولید هیدروژن هستند. هیدروژن یک گزینه مناسب به عنوان سوخت برای استفاده در خودروها، ساکن‌مان‌ها و ادوات الکترونیکی است.

1-1-15.1.2-2 سنسورهای گازی

وجود گازهای خطرناک و کشنده که انتشار آنها در محیط منجر به صدمات جیران‌ناپذیری می‌شود، همیاره‌ی کیک از مشکلات صنایع نفت، گاز و نیروگاه‌های هسته‌ای می‌باشد. از طرفی سنسورهای که در این محیط‌ها به‌کار می‌رود دارای مشکلاتی نظیر حساسیت‌پایی به گاز مربوطه، عمر کوتاه و راندمان پایین می‌باشند. استفاده از نیمه‌هادی‌های مثل TiO₂ و SnO₂ سنسورها به دلیل پایداری و طول عمر بالا، استفاده آسان، کم هزینه و حساسیت بالا به مقادیر بسیار کم گاز مربوطه در ساخت سنسورها بسیار مورد توجه قرار گرفته است. سنسورهای مورد استفاده در محیط‌های آلوده قابلیت از بین بردن آلودگی‌های انباشتی شده بر روی خود را ندارند و در مدت زمان کوتاهی کارآی خود را از دست می‌دهند. در حالی که سنسورهای دی اکسید تیتانیوم به دلیل دارا بودن خاصیت خود تمیز شوندگی در همه‌ی محیط‌ها کاربرد دارند. همچنین می‌توان با دوبند کردن انواع مختلف نظیر مس، نقره و ... خاصیت فتوکاتالیزوری دی اکسید تیتانیوم را بهبود بخشید در نتیجه طول عمر و راندمان این سنسورها به میزان زیادی افزایش می‌یابد (Zheng et al., 2000; Galatsis et al., 2001).

1-1-15.1.2-3 خاصیت ضدپاک‌تراپی دی اکسید تیتانیوم

ناوندوزان دی اکسید تیتانیوم به عنوان یک ماده ضدپاک‌تراپی جدید، توجه زیادی را به خاطر ویژگی‌های خوبی نظیر پایداری، دوام و ایمنی در سال‌های اخیر به خود جلب نموده‌اند. دی اکسید
تیتا٘یْٛ در اثر تابش نور می تواند گونه‌های فعال -O₂ و OH⁻ را تولید کند که این ترکیبات با حمله به غشا خارجی باکتری‌ها باعث تخرب آن‌ها می‌شوند. بررسی‌های نشان داده است که فعالیت ضدبакتریایی دی اکسید تیتا٘یْٛ در اثر افزودن نقره به شدت افزایش می‌یابد.

1 خصائص -3\(_4\) خود تمیز شوندگی

استفاده از پاک کننده‌های شیمیایی به منظور تیم‌کننده، در افزایش آلودگی‌های محیط زیست نقش بسزایی دارد و استفاده از این مواد تأثیرات مخرب‌تر را بر محیط زیست و سلامت انسان می‌گذارد. فتوکاتالیزور دی اکسید تیتا٘یْٛ با فرایند اکسیداسیون در اثر تابش نور خورشید و یا نور ماورای بنفش و همین طور خاصیت هیدروفیلی بالای خود توانسته‌اند در سطوح پوششی مورد استفاده قرار گیرند. با استفاده از این سطوح، دیگر نیازی به پاک کننده‌های شیمیایی نیست، لذا از خطرات آلودگی هوا کاهش می‌یابد. این سطوح (سطح فتوکاتالیزوری) به دلیل خاصیت آنتی استاتیک (خاک جذب نمی‌کند)، گردوگیر و لکه‌های روزی سطح را به راحتی به کمک آب باران شسته و پاک می‌کند.

1-16 بهبود فعالیت فتوکاتالیزوری دی اکسید تیتا٘یْٛ

فعالیت فتوکاتالیزوری TiO\(_2\) تابعی از خواص فیزیک شیمیایی آن می‌باشد. فعالیت فتوکاتالیزوری دی اکسید تیتا٘یْٛ به میزان بلورینگی، اندازه ذرات و ساختار سطحی شامل مقدار هیدروکسیل سطحی وابسته می‌باشد.

پرچم بودن شکاف انرژی \(\text{TiO}_2\) و سرعت بالای باند ترکیب الکترون-حفره‌های تولید شده از \(\text{TiO}_2\) به وسیله بای‌از باند برقی اثر مستقیم است. برای غلبه بر این محدودیت‌ها از روش‌های مختلفی نظیر نشانده 18 یون فلزی (نحیب و واسطه)، دوب کردن 20 نافازات و تاسیل اتصال ناهماهنگ 21 با نیمه‌هادی‌های دیگر استفاده می‌شود (Borgarello et al., 1982).

1. Deposition
2. Doping
3. Heterojunction
Title of Thesis: Preparation and investigation on photocatalytic activity of TiO₂/Ag₂CrO₄ nanocomposites under visible-light irradiation for degradation of some organic dye pollutants

Supervisor: Dr. Aziz Habibi–Yangjeh

Graduate Degree: M. Sc.
Major: Chemistry
Specialty: Physical Chemistry
University: Mohaghegh Ardabili
Faculty: Science
Graduation date: September-2017
Number of pages: 96

Abstract:
In recent decades, almost entire of the earth is facing drinking water scarcity, due to contamination of water and discharge of untreated wastewaters to the environment. As a “green” technology, semiconductor-based photocatalysis, has attracted much more interests for degradation of environmental pollutants. Among various semiconductors, titanium dioxide (TiO₂) has been the most used photocatalyst in the heterogeneous photocatalytic processes, because of its considerable stability, non-toxicity, and abundant resources. However, the worst drawback of this semiconductor is its poor activity under visible-light irradiation. This is related to the wide band gap of about 3.20 eV and high recombination rate of the photogenerated electron-hole pairs. One effective method to increase visible-light harvesting ability of TiO₂ is combination of it with narrow band gap semiconductors. For this reason in this thesis, nanocomposites of TiO₂/Ag₂CrO₄, TiO₂/Ag₂WO₄/AgBr and TiO₂/Fe₃O₄/CoWO₄ were prepared by refluxing method. The structure, morphology, purity, specific surface area, and electronic properties of the as-prepared samples were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDX), UV–vis diffuse reflectance spectroscopy (DRS), Fourier transform-infrared spectroscopy (FT-IR), Brunauer–Emmett–Teller (BET) and photoluminescence (PL) techniques. Photocatalytic activity of the nanocomposites was examined by degradation of various pollutants under visible-light irradiation. The TiO₂/Ag₂CrO₄ (50%), TiO₂/Ag₂WO₄/AgBr (15%) and TiO₂/Fe₃O₄/CoWO₄ (30%) nanocomposites had highest activity in comparison with the other weight percents. Effects of different parameteres such as preparation time and scavengers of reactive species on the kinetic of photodegradation reaction were investigated.

Keywords: Nanocomposite, Photocatalysis, TiO₂/Ag₂CrO₄, TiO₂/Ag₂WO₄/AgBr, TiO₂/Fe₃O₄/CoWO₄
Preparation and Investigation on Photocatalytic Activity of TiO$_2$/Ag$_2$CrO$_4$ Nanocomposites under Visible-Light Irradiation for Degradation of Some Organic Dye Pollutants