پایان نامه در رشته ی عمران گرايش سازه

بررسی تاثیر واشتونیت و میکروسیلیس بر دوام بتن در برابر ذوب و انجماد در محیط سولفاته و کلرته

استاد راهنما:
دکتر یعقوب محضی

استاد مشاور:
دکتر امین قنادی اصل

پژوهشگر:
میلاد کاظمی

پاییز 96
نام خانوادگی دانشجو: کاظمی

عنوان پایان نامه: بررسی تاثیر وولاتوئینت و میکروسیلیس بر دوام بتن در برابر ذوب و انجامد در محوط سولفاته و کلرته

استاد راهنما: دکتر یعقوب محمدی

استاد مشاور: دکتر امین فرّادی اصل

رشته: عمران

مقطع تحصیلی: کارشناسی ارشد

گروه: سازه

دانشگاه: محقق اردبیلی

دانشکده: فنی و مهندسی

تاریخ دفاع: 1388

تعداد صفحات: 138

چکیده:

بر خلاف دوام ذاتی بتن، سازه‌های بتنی زیادی یافته می‌شوند که خصوصیات خوبی از لحاظ دوام در مقابل یک‌خیابن از خود نشان می‌دهند. یکی از دلایل اصلی تخریب بتن در نواحی سردسیر ایران به خصوص در مناطق غربی و شمال غربی ناشی از سیکل‌های بی‌سیزدن و آب‌شدن می‌باشند. مقاومت بتن در برابر سیکل‌های انجماد و ذوب به نشانهی بالایی درون بتن وابسته است به ویژه در زمانی که آب داخل سنگدانه‌ها منجمد گشته و باعث تغییر حجم بتن در آب و هواهای سرد می‌شود. این تغییر حجم سبب ایجاد ترک خوردگی‌های زیاد در بتن می‌شود که نهایتاً منجر به کاهش مقاومت و تضعیف ساختمان بتن می‌گردد. مسئله زمانی بحرانی تر می‌گردد که بتن علاوه بر ذوب و انجامد و آب و شکستگی‌های آن در محیط‌های محبری چون سولفاته و کلرته نیز قرار می‌گیرد. اهمیت این موضوع تحقیقات زیادی را در زمینه‌ی دوام در برابر یک‌خیابن و محیط‌های محبر به خود جلب کرده است. بدين منظور در این تحقیق برای بالا بردن مقاومت شفافی و سایر خواص مکانیکی بتن، اثر میکروسیلیس (0، 0.5 و 1 درصد) و وولاتوئینت (0، 0.5 و 1.5 درصد) چاپگری بسیار خواص مکانیکی بتن، اثر میکروسیلیس (0، 0.5 و 1 درصد) و وولاتوئینت (0، 0.5 و 1.5 درصد) چاپگری سیمان در چهار حالت نمونه‌های شاهد، نمونه‌های سیکلدار در محیط معمولی، نمونه‌های سیکلدار در محیط کلرته و نمونه‌های سیکلدار در محیط سولفاته مورد بررسی قرار گرفته است. در مجموع 432 نمونه نهپه گردید که به 4 دسته 108 تاپی تقسیم شدند که 108 نمونه به عنوان نمونه شاهد در سنین 56 و 66 و 74 روزه (هٔ زمان با اتمام سیکل‌های 100 و 150 و 100 و 150 اندوره‌گیری شد و سه گروه 180 نمونه دیگر نیز تحت آزمایش ذوب و انجامد بر اساس استاندارد ASTM C666B بعده از 42.5 و 50 سیکل قرار گرفته و مقاومت فشاری و تراستوئینک نمونه‌ها بعد از چرخهی ذوب و انجامد به عنوان معیار سنجش دوام بتن در نظر گرفته شد. در بررسی اثر اختلالات میکروسیلیس با وولاتوئینت بالارین مقاومت فشاری به ازای 5 درصد میکروسیلیس با 5 درصد وولاتوئینت حاصل گردید که نشان‌دهندهٔ طرح اختلالی است که بیشترین دوام را در بررسی عوامل ذوب داشته است.
<table>
<thead>
<tr>
<th>فصل اول: مقدمه و کلیات پژوهش</th>
</tr>
</thead>
<tbody>
<tr>
<td>فهرست مطالب</td>
</tr>
<tr>
<td>عنوان</td>
</tr>
<tr>
<td>صفحه</td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>1-1- مقدمه، پیشینه و اهداف تحقیق ... 2</td>
</tr>
<tr>
<td>2-1- معرفی بین های پوزولان ..</td>
</tr>
<tr>
<td>2-2- اجزای تشکیل دهنده بین ...</td>
</tr>
<tr>
<td>2-3- میزان آب در خمیر ...</td>
</tr>
<tr>
<td>2-4- محاسن استفاده از نسبت آب به سیمان کمتر ..</td>
</tr>
<tr>
<td>2-5- مزیت استفاده از نسبت آب به سیمان بیشتر ..</td>
</tr>
<tr>
<td>2-6- پن تازه ..</td>
</tr>
<tr>
<td>2-7- 1- بعضی از مسئلاتی که ممکن است در بین تازه به وجود آید</td>
</tr>
<tr>
<td>2-8- 1- دانه‌ها در بین ...</td>
</tr>
<tr>
<td>2-9- 1- تمیزی، مقاومت و سخن دانه‌ها ...</td>
</tr>
<tr>
<td>2-10- 1- مواد زیان آور در دانه‌ها ..</td>
</tr>
<tr>
<td>2-11- 1- مقاومت یخزدگی دانه‌ها ...</td>
</tr>
<tr>
<td>2-12- 1- تأثیر عمل آوری بر مقاومت فشاری بین ...</td>
</tr>
<tr>
<td>2-13- 1- تأثیر عیار سیمان بر خواص مکانیکی و دوامی بین های حاوی میکروسیلیس</td>
</tr>
<tr>
<td>2-14- 1- دانه‌بندی مصالح دانه‌ای ..</td>
</tr>
<tr>
<td>2-15- 1- مواد افزودنی در بین ..</td>
</tr>
<tr>
<td>2-16- 1- تخریب بین ناشی از ذوب و انجام ..</td>
</tr>
<tr>
<td>2-17- 1- تأثیر میخوایان محروم مانند محیط سعلومه بر دوام بین</td>
</tr>
<tr>
<td>2-18- 1- خلاصه و اهداف تحقیق ...</td>
</tr>
<tr>
<td>2-19- 1- خلاصه و اهداف تحقیق ...</td>
</tr>
</tbody>
</table>
فصل دوم: مواد و روش پژوهش

39- 1- مواد مورد استفاده

27- 2- آزمایش لس انجلس

49- 3- قالب‌ها

49- 4- روش انجام آزمایش

50- 5- عمل آوری نمونه‌ها

52- 6- طرح اختلال‌ها

فصل سوم: نتایج و یافته‌های پژوهش

56- 1- مقدمه

61- 2- آزمایش مقاومت فشاری برای طرح اختلال‌های رده A نمونه‌های شاهد

64- 2- آزمایش مقاومت فشاری برای طرح اختلال‌های رده B نمونه‌های شاهد

65- 2- آزمایش مقاومت فشاری برای طرح اختلال‌های رده C نمونه‌های شاهد
فصل چهارم: نتیجه‌گیری و پیشنهادات

1-4 نتیجه‌گیری

114

1-4 پیشنهادها و موضوعات تحقیق

115

فهرست منابع و مآخذ

116
فهرست جداول

26 جدول 1: مشخصات فیزیکی پودر ولستونیت
29 جدول 2: مشخصات سیمان پرتلند بوزولاته اردلیل
40 جدول 3: دانه‌گذاری سنگدانه‌های شن
41 جدول 4: دانه‌گذاری سنگدانه‌های ماسه
42 جدول 5: مشخصات فنی فوق-کنندگی مصری
46 جدول 6-12 روش انجام آزمایش لس انجلز بر حسب دانه‌گذاری
50 جدول 1: تعداد و وزن گلوله‌های فولادی
54 جدول 2-8 مقدار مصالح مرکبی در طرح اختلاف‌ها
59 جدول 3-2: مقاومت فشاری بتن شاهد حاصل از میانگین 3 نمونه آزمایشی برای 12 طرح اختلاف
60 جدول 3-3: مقاومت فشاری بتن‌های در معرض سیکل‌های یخیدن در محیط نازک و حاصل از میانگین 3 نمونه
61 جدول 3-4: مقاومت فشاری بتن‌های در معرض سیکل‌های یخیدن در محیط نازک و حاصل از میانگین 3 نمونه
62 جدول 3-5: نتایج آزمایش مقاومت فشاری برای طرح اختلاف‌های ریف A نمونه‌های شاهد
64 جدول 3-6: نتایج آزمایش مقاومت فشاری برای طرح اختلاف‌های ریف B نمونه‌های شاهد
65 جدول 3-7: نتایج آزمایش مقاومت فشاری برای طرح اختلاف‌های ریف C نمونه‌های شاهد
67 جدول 3-8: نتایج آزمایش مقاومت فشاری برای طرح اختلاف‌های ریف D نمونه‌های شاهد
68 جدول 3-9: نتایج آزمایش مقاومت فشاری نمونه‌های سیگنال‌ساز برای طرح اختلاف‌های ریف A در محیط معمولی
70 جدول 3-10: نتایج آزمایش مقاومت فشاری نمونه‌های سیگنال‌ساز برای طرح اختلاف‌های ریف B در محیط معمولی
72 جدول 3-11: نتایج آزمایش مقاومت فشاری نمونه‌های سیگنال‌ساز برای طرح اختلاف‌های ریف C در محیط کلرینه
74 جدول 3-12: نتایج آزمایش مقاومت فشاری نمونه‌های سیگنال‌ساز برای طرح اختلاف‌های ریف D در محیط کلرینه
76
جدول 3-15: نتایج آزمایش مقاومت فشاری نمونه سیکلدار برای طرح اختلاط‌های رنگ C در محیط کلرته

جدول 3-16: نتایج آزمایش مقاومت فشاری نمونه سیکلدار برای طرح اختلاط‌های رنگ D در محیط سولفاته

جدول 3-17: نتایج آزمایش مقاومت فشاری نمونه سیکلدار برای طرح اختلاط‌های رنگ A در محیط سولفاته

جدول 3-18: نتایج آزمایش مقاومت فشاری نمونه سیکلدار برای طرح اختلاط‌های رنگ B در محیط سولفاته

جدول 3-19: نتایج آزمایش مقاومت فشاری نمونه سیکلدار برای طرح اختلاط‌های رنگ C در محیط سولفاته

جدول 3-20: نتایج آزمایش مقاومت فشاری نمونه سیکلدار برای طرح اختلاط‌های رنگ D در محیط سولفاته

جدول 3-21: رشد مقاومت فشاری نمونه‌های شاهد در طول زمان

جدول 3-22: رشد مقاومت فشاری نمونه‌های سیکلدار در محیط معمولی در طول زمان

جدول 3-23: رشد مقاومت فشاری نمونه‌های سیکلدار در محیط کلرته در طول زمان

جدول 3-24: رشد مقاومت فشاری نمونه‌های سیکلدار در محیط سولفاته در طول زمان

جدول 3-25: نتایج متوسط آزمایش التروسونیک برای 12 نوع طرح اختلاط نمونه‌های شاهد

جدول 3-26: نتایج متوسط آزمایش التروسونیک برای نمونه‌های سیکلدار در محیط معمولی

جدول 3-27: نتایج متوسط آزمایش التروسونیک برای 12 نوع طرح اختلاط نمونه‌های سیکلدار در محیط کلرته

جدول 3-28: نتایج متوسط آزمایش التروسونیک برای 12 نوع طرح اختلاط نمونه‌های سیکلدار در محیط سولفاته
فهرست اشکال

عنوان اشکال...صفحه

 شكلي ۱- مخروط ناقص آبرود مخصوص آزمایش اسلامب ...۷
 شكلي ۱- بودر ولائستین..۷۶
 شكلي ۱- منحنی توزیع اندازه ذرات ..۷۷
 شكلي ۱- منحنی دانه‌بندی شن ..۴۱
 شكلي ۲- منحنی دانه‌بندی ماسه ..۴۲
 شكلي ۲- ظرف حاوی مایع فوق روان کندن..۴۴
 شكلي ۲- حباب ساز بن ..۴۶
 شكلي ۲- دستگاه لس آئلیس در آزمایشگاه بتن دانشگاه محقق اردبیلی ..۴۸
 شكلي ۲- قابل‌های مورد استفاده در این تحقیق ..۴۹
 شكلي ۲- دستگاه ذوب و انجماد آزمایشگاه تکمیلی دانشگاه محقق اردبیلی۵۲
 شكلي ۲- فراگیری نمونه‌های سیکلر در حوضه آب ..۵۳
 شكلي ۲- تصویر دستگاه مقاومت فشاری ...۵۷
 شكلي ۲- مقاومت فشاری نمونه‌های شاهد بدون ولائستین ...۶۳
 شكلي ۳- درصد آفزايش یا کاهش مقاومت فشاری نمونه‌های شاهد بدون ولائستین۶۴
 شكلي ۳- مقاومت فشاری نمونه‌های شاهد حاوی ۵% ولائستین ..۶۵
 شكلي ۳- درصد آفزايش یا کاهش مقاومت فشاری نمونه‌های شاهد حاوی ۵% ولائستین۶۶
 شكلي ۳- مقاومت فشاری نمونه‌های شاهد حاوی ۱۰% ولائستین ..۶۷
 شكلي ۳- درصد آفزايش یا کاهش مقاومت فشاری نمونه‌های شاهد حاوی ۱۰% ولائستین۶۸
 شكلي ۳- مقاومت فشاری نمونه‌های شاهد حاوی ۱۲/۵% ولائستین ...۶۹
 شكلي ۳- درصد آفزايش یا کاهش مقاومت فشاری نمونه‌های شاهد حاوی ۱۲/۵% ولائستین۷۰
 شكلي ۴- مقدار مقاومت فشاری نمونه‌های سیکلر بدن ولائستین هیزمان با ۲۸، ۴۶ و ۷۴ روزه در محیط معمولی ...۷۴
 شكلي ۴- مقدار مقاومت فشاری نمونه‌های سیکلر حاوی ۵% ولائستین هیزمان با ۲۸، ۴۶ و ۷۴ روزه در محیط معمولی ...۷۵
 شكلي ۴- درصد آفزايش یا کاهش مقاومت فشاری نمونه سیکلر حاوی ۵% ولائستین در محیط معمولی ...۷۶

۰
الشکل‌های ۳۴-۳۵: مقاومت فشاری نمونه سیکلدر حاوی ۱۰٪ ولاتونت هیژمن با ۴۸.۶ و ۷۴ روزه در محیط معمولی

الشکل‌های ۳۶-۳۷: مقاومت فشاری نمونه سیکلدر حاوی ۱۰٪ ولاتونت در محیط معمولی

الشکل‌های ۳۸-۳۹: مقاومت فشاری نمونه سیکلدر حاوی ۱۰٪ ولاتونت در محیط کراته

الشکل‌های ۴۰-۴۱: مقاومت فشاری نمونه سیکلدر حاوی ۱۰٪ ولاتونت در محیط سولفات

الشکل‌های ۴۲-۴۳: مقاومت فشاری نمونه سیکلدر حاوی ۱۰٪ ولاتونت در محیط معمولی

الشکل‌های ۴۴-۴۵: مقاومت فشاری نمونه سیکلدر حاوی ۱۰٪ ولاتونت در محیط سولفات

الشکل‌های ۴۶-۴۷: مقاومت فشاری نمونه سیکلدر حاوی ۱۰٪ ولاتونت در محیط معمولی

الشکل‌های ۴۸-۴۹: مقاومت فشاری نمونه سیکلدر حاوی ۱۰٪ ولاتونت در محیط معمولی

الشکل‌های ۵۰-۵۱: مقاومت فشاری نمونه سیکلدر حاوی ۱۰٪ ولاتونت در محیط سولفات

الشکل‌های ۵۲-۵۳: مقاومت فشاری نمونه سیکلدر حاوی ۱۰٪ ولاتونت در محیط معمولی

الشکل‌های ۵۴-۵۵: مقاومت فشاری نمونه سیکلدر حاوی ۱۰٪ ولاتونت در محیط معمولی

الشکل‌های ۵۶-۵۷: مقاومت فشاری نمونه سیکلدر حاوی ۱۰٪ ولاتونت در محیط معمولی

الشکل‌های ۵۸-۵۹: مقاومت فشاری نمونه سیکلدر حاوی ۱۰٪ ولاتونت در محیط معمولی

الشکل‌های ۶۰-۶۱: مقاومت فشاری نمونه سیکلدر حاوی ۱۰٪ ولاتونت در محیط معمولی

الشکل‌های ۶۲-۶۳: مقاومت فشاری نمونه سیکلدر حاوی ۱۰٪ ولاتونت در محیط معمولی

الشکل‌های ۶۴-۶۵: مقاومت فشاری نمونه سیکلدر حاوی ۱۰٪ ولاتونت در محیط معمولی

الشکل‌های ۶۶-۶۷: مقاومت فشاری نمونه سیکلدر حاوی ۱۰٪ ولاتونت در محیط معمولی

الشکل‌های ۶۸-۶۹: مقاومت فشاری نمونه سیکلدر حاوی ۱۰٪ ولاتونت در محیط معمولی

الشکل‌های ۷۰-۷۱: مقاومت فشاری نمونه سیکلدر حاوی ۱۰٪ ولاتونت در محیط معمولی

الشکل‌های ۷۲-۷۳: مقاومت فشاری نمونه سیکلدر حاوی ۱۰٪ ولاتونت در محیط معمولی

الشکل‌های ۷۴-۷۵: مقاومت فشاری نمونه سیکلدر حاوی ۱۰٪ ولاتونت در محیط معمولی
شکل 3- دقیقه مقاومت فشاری نمونه‌های سیکل‌دار در محیط کلری به ازای درصدهای مختلف میکروسپلس و ولستونیت

شکل 4- دقیقه مقاومت فشاری نمونه‌های سیکل‌دار در محیط سولفات به ازای درصدهای مختلف میکروسپلس و ولستونیت

شکل 5- مقاومت فشاری نمونه‌های سیکل‌دار در محیط سولفات به ازای درصدهای مختلف میکروسپلس و ولستونیت

شکل 6- مقاومت فشاری نمونه‌های سیکل‌دار در محیط کلری به ازای درصدهای مختلف میکروسپلس و ولستونیت

شکل 7- مقاومت فشاری نمونه‌های سیکل‌دار در محیط سولفات به ازای درصدهای مختلف میکروسپلس و ولستونیت

شکل 8- مقاومت فشاری نمونه‌های سیکل‌دار در محیط کلری به ازای درصدهای مختلف میکروسپلس و ولستونیت

شکل 9- سونیسکوب مورد استفاده در آزمایش تراسونیک (تعیین مدول الاستیسیتی دینامیکی)
شکل ۳-۵۶: درصد افزایش یا کاهش مدول الاماسپینه دینامیکی برای نمونه‌های سیکل‌دار در محیط معمولی با ۱۰۰ سیکل

شکل ۳-۵۷: درصد افزایش یا کاهش مدول الاماسپینه دینامیکی برای نمونه‌های سیکل‌دار در محیط معمولی با ۱۵۰ سیکل

شکل ۳-۵۸: نمودار نتایج آزمایش گیرنده‌های نمونه‌های سیکل‌دار در محیط کلر با ۱۰۰ سیکل

شکل ۳-۵۹: درصد افزایش یا کاهش مدول الاماسپینه دینامیکی برای نمونه‌های سیکل‌دار در محیط کلر با ۴۵ سیکل

شکل ۳-۶۰: درصد افزایش یا کاهش مدول الاماسپینه دینامیکی برای نمونه‌های سیکل‌دار در محیط کلر با ۱۵۰ سیکل

شکل ۳-۶۱: درصد افزایش یا کاهش مدول الاماسپینه دینامیکی برای نمونه‌های سیکل‌دار در محیط کلر با ۱۵۰ سیکل

شکل ۳-۶۲: نمودار نتایج آزمایش گیرنده‌های نمونه‌های سیکل‌دار در محیط سولفات با ۱۰۰ سیکل

شکل ۳-۶۳: درصد افزایش یا کاهش مدول الاماسپینه دینامیکی برای نمونه‌های سیکل‌دار در محیط سولفات با ۴۵ سیکل

شکل ۳-۶۴: درصد افزایش یا کاهش مدول الاماسپینه دینامیکی برای نمونه‌های سیکل‌دار در محیط سولفات با ۱۰۰ سیکل

شکل ۳-۶۵: درصد افزایش یا کاهش مدول الاماسپینه دینامیکی برای نمونه‌های سیکل‌دار در محیط سولفات با ۱۵۰ سیکل
فصل اول:
مقدمه و کلیات
پژوهش
نرگی به دو قرن از ساخت بتن می‌گذرد. برخلاف دوام ذاتی بتن، سازه‌های بتنی زیادی ایجاد می‌شوند که خصوصیات خوبی از لحاظ دوام در مقابل خیب‌دیدگی از خود نشان نمی‌دهند. یکی از دلایل اصلی تخریب بتن در نواحی سردسیر ناشی از یخ زدن و آب شدن‌های متواتر می‌باشد. مقاومت بتن در برای یخ زدن و آب شدن‌های متواتر به نشانه بالایی درون بتن وابسته است به ویژه در زمانی که آب داخل سنگدانه‌ها منجمد گشته و باعث تغییر حجم بتن در آب و هوا سرد می‌شود. این تغییر حجم سبب ایجاد ترک‌خوردگی‌های ریز در بتن می‌شود که نهایتاً منجر به کاهش مقاومت و تضعیف ساختار بتن می‌شود. (Li, Zhang & Ou، 2006). بنابر اهمیت این مسئله، با یا بدون بتن در محیط‌های مختلف و به‌ویژه خورندگی برای بتن مسلح مورد توجه خاص محققان قرار گرفته است (مستوفی نژاد و حسینیان، 1385). مشاهده در خرابی‌های با عامل فیزیکی و شیمیایی در بتن‌ها در اکثر نقاط جهان و به‌ویژه در بیشتر در کشورهای در حال توسعه، افزایش درآمده به دوام بتن‌های با ویژگی‌های خاص و با دوام لازم سوق داده است. هر جند استفاده از بتن با مقاومت بالا در سازه‌های بتن آرمه از نیمه‌های دوم قرن بیستم شروع شده، ولی رشد شتاب به‌کاربرد عملی آن به حدود سی و چهارول سی و پنج سال پیش به می‌گردد. در این راستا در پارادایم از کشورها مشخصات و دستورالعمل‌ها و استانداردهایی برای طرح بتن با عملکرد بالا تهیه شده و در بسیاری از بخش‌های این کشورها افزایش ملزم به رعایت استانداردهای سازه‌های گسته‌تر. استفاده از افزودنی‌های مختلف به عنوان ماده پنجم بتن، گسترش وسیعی بافت و دریاچه‌ای از کشورها دیگر بیشتر به‌طور اساسی از یک افزودنی ساخته شده و به طرفی این‌ها و زوال بتن به شدت به تبک‌ها و ریزترک‌ها در اثر بارگذاری و آب اثرات محوطه‌ای وابسته است. تغییرات گرمایی و رطوبتی در خمیر سیمان باعث ایجاد ریزترک‌ها می‌شوند و چنین ریزترک‌هایی در سطح داهنده در شدت متمرکز می‌شوند. با تأثیر بیشتر بارگذاری و نیز سایر مسائل محیطی، ریزترک‌ها در کل بتن منتشر می‌شوند. 1.Li, Zhang & Ou
1- معرفی بتن حاوی پوزولان:

پوزولان‌ها مواد سیلیسی و آلومینی هستند که در مجاورت آب در حرارت معمولی با آهک ترکیب شده و تشکیل مواد پایدار و نامحلول (ز) داده و خاصیت سیمانی شدن دارند. اقدام جهت شناسایی خاصیت پوزولان‌ها در بتن و ملات سال‌های که به طور وسیعی در کشورهای مختلف امریکایی، اروپایی و ایران صورت گرفته است به نحوی که به کارگیری این مواد به عنوان ماده جایگزین سیمان در بتن در آینده نامه‌ای آورده شده است. در جنگ دهه‌ای اخیر برای رفع و کاهش نواقص بتن و رسدند به بتن بادام، استفاده از مواد اضافه پوزولانی مانند میکروسیلیس، سرباره، خاکستر بادی و... رایج گردیده است. استفاده از این مواد ضمن کاهش مصرف انرژی موجود آلودگی هوا و کمک به حفظ محیط زیست می‌گردد و با جایگزینی شدن به جای قسمتی از سیمان، هزینه تولید بتن مصرفی را کاهش می‌دهد. در بین این مواد مضاف، پوزولان‌های مصنوعی به علت مطالعه و میزان زیست بیشتر مورد توجه قرار گرفته است. پژوهش‌های اساسی برنامه استفاده از میکروسیلیس در مخلوط‌های بتن با سیمان پرلند در دهه 1970 آغاز شده است. اولین گزارش‌های مربوط به استفاده از این ماده به عنوان پوزولان به اوایل دهه 1950 برپایه (آيتسن، 1986؛ موسسه بین آمریکا (ACI)) میکروسیلیس را چنین تعیین کرده: یک ماده بسیار زیست‌محیطی مشکل از سیلیس غیرکریستالی (آمورف) که از کوره‌های قوس الکتریکی به عنوان محلول جایگزین ضایع سیلیکون‌های آپی‌های حاوی سیلیکون تولید می‌شود (2000، ACI). در واقع میکروسیلیس دود خروجی از کوره‌های قوس الکتریکی در کارخانه‌های تولید این فلزات است و توسط فیلترهایی که در قسمت خروجی نصب می‌شوند، جمع‌آوری می‌گردد. رنگ میکروسیلیس در محدودیت سفید تا خاکستری تیره می‌باشد. ساختار کوره‌های الکتریکی که این ماده در آن تولید می‌شود، اثر مهمی در کیفیت و رنگ میکروسیلیس دارد. میزان سیلیس موجود در میکروسیلیس 85 تا 98 درصد می‌باشد که بستگی به نوع محتوای کوره و کارخانه دارد (ACI, 1995).

با توجه به اینکه اندورژی ذرات میکروسیلیس کوچکتر از اندازه‌ی ذرات سیمان پرلند است، می‌تواند به راحتی فضایی بین ذرات سیمان را پر کند. پس از آن میکروساختارهای بتن چگال تر شده و در نتیجه مقاومت فشاری بتن بالاتر می‌رود (ترنس، 2005). به نظر می‌رسد اثر پرکندگی میکروسیلیس هنگامی که توانای مواد فوق را کنده استفاده شود بیشتر قابل توجه است. که دلیل آن پخش بهتر ذرات سیمان و میکروسیلیس می‌باشد (باتری، 1972). از طرفی بررسی‌ها نشان می‌دهند که واکنش پوزولانی

1. Mehta & Aitcin
1. Terence
میکروسیلیس به سیار سریعتر از پوزولان‌های معمولی مانند خاکستر بادی و ... می‌باشد. در نتیجه واکنش پوزولانی، ذرات ریز میکروسیلیس با هیدروکسید کلسیم Ca(OH)۲ آراد شده از آبگیری سیمان، ترکیب شده و یک ترکیب جدید به صورت زل با نام سیلیکات کلسیم هیدراته شده را می‌سازد. این ترکیب با کاهش تخلخل و با به هم‌شدن ذرات، عامل اصلی افزایش مقاومت در بتن‌های حاوی میکروسیلیس می‌باشد (زانگ چین، ۲۰۱۱).

ولاستونیت یک مادهی معدنی بر پایه کلسیم ایزوسیلیکات است که ممکن است شامل مقادیری اجزاء اصلی تشکیل‌دهنده cao و SiO2‌ و آهن و منیزیم نیز باشد (مادور و همکاران، ۲۰۰۷). هر مولفه تقیب ۵۰ درصد وزن ولاستونیت را تشکیل می‌دهد (ماسکیم، ۱۹۸۱). این ماده عموماً سفید رنگ است و زمینی که سنگه ناحیه در معرض دما و فشار زیاد قرار می‌گیرد به وجود می‌آید (راماجاندارانالال، ۲۰۰۵). ولاستونیت استفاده‌های صنعتی برجسته‌ای در سراسر دنیا دارد. این ماده اکثراً در کارخانه‌های کاشی و سرامیک به عنوان سفیدی و اجزاء سوزنی شکل آن استفاده می‌شود (دیاز و همکاران، ۲۰۰۰).

هر چند در سال‌های اخیر، برخی محققان در پژوهش‌های خود به بررسی اثر ولاستونیت به همراه پوزولان‌های خاکستر بادی و میکروسیلیس در بتن پرداخته‌اند، اما با این حال تاکنون در کشور ما در این زمینه تحقیقی قابل توجه به عمل نیامده است.

استقلال ولاستونیت در مخلوط‌های بنی به عنوان یکی از ماده‌های هندوستانی گزارش شد. نتایج حاصل از مطالعه نشان داد که مشارکت ولاستونیت در بتن مقاومت خمشی را افزایش می‌دهد (CRRI، ۲۰۰۴).

1-۳- اجزاء تشکیل‌دهنده بتن:

بتن عمده‌ای از دو قسمت تشکیل می‌شود:

۱. مصالح سنگی: حدود ۶۰ تا ۷۵ درصد حجم بتن از مصالح سنگی تشکیل می‌شود.

۲. zongjin
۳. mathur
۴. Maxim
۵. Ramachandranetal
۶. De Aza
۲. خمیر سیمان: حدود ۲۵ تا ۴۵ درصد حجم بتن با خمیر سیمان بر می‌شود.
از ۲۵ تا ۴۰ درصد خمیر سیمان ۷ الی ۱۵ درصد سیمان و ۱۴ الی ۲۱ درصد آب است.

۱-۳-۱ میزان آب در خمیر سیمان:
میزان آب در بتن معمولا با نسبت وزنی آب به سیمان (W/c) نشان داده می‌شود. به صورت یک
اصل بايد حتی المقدور نسبت W/c کم انتخاب شود.
قسمتی از آبی که در ساخت بتن مصرف می‌شود (حدود ۲۵ درصد وزنی سیمان)، جذب ذرات
سیمان شده و در واکنش‌های شیمیایی (هیدرولیس) به کار گرفته می‌شود. اما عملا ساخت بتن با
امکان پذیر نیست، زیرا چنین بتنی به اندازه‌ای سفت است که کار کردن با آن میسر نیست.
W/c = ۰/۲۵ را تا ۲/۴ الی ۴/۹ افزایش می‌دهند. اما در همین محدوده باز هم چه W/c
بگیرند، بی‌توجهی به آب صورت می‌گیرد. زیرا میزان آب که در واکنش شیمیایی شرکت کند، با
یا در بتن محسوس می‌شود و یا ذوب شده و فضای خالی ایجاد می‌کند، یعنی در هر حال از حجم میان
بتن می‌کاهد (مستوفی نژاد، ۱۳۹۲).

۱-۴-۱ محاسب استفاده از نسبت آب به سیمان کمتر:
۱. افزایش مقاومت فشاری و کششی بتن
۲. افزایش خاصیت آب‌برداری در بتن (زیرا هر چه آب کمتری مصرف شده باشد، فضای خالی کمتری در
بتن ایجاد شده و در نتیجه روشن‌های کمتری برای عبور آب وجود خواهد داشت)
۳. کاهش جذب آب (به دلیل محدودتر شدن فضاهای خالی)
۴. پیوستگی بیشتر بین باهای متواضع در بتن بزرگ
۵. افزایش چسبندگی بین میلگرد و بتن (چون سطح تماس میلگرد و بتن بیشتر خواهد بود)
۶. افزایش مقاومت در مقابل شرایط جوی نابسامع (تر و خشک شدن‌های متواضع و سرد و گرم شدن‌های
متوالی)
۷. کاهش میزان افت
8. کاهش میزان خشکی

9. کاهش میزان آب اندامختن بتن

10. کاهش امکان جذاشدن دانه‌ها

1-5- مزیت استفاده از نسبت آب به سیمان بیشتر:

زیاد فقط یک حسند و آن روایت و کارآیی بیشتر است. جایی بسی نتیجه است که اکثر W/c
مزیت قبلی (ناشی از W/c کمتر) فداکاران نیک حسین (کارآیی بالاتر) شده و از W/c بیشتر استفاده
می‌شود. پناری فقط به نحاتانی در کارگاه کارکردن با بتن راحت‌تر باشد، آب بتن را زیادتر کرده و بدن
ترتیب نارسانی‌های علی‌بایرا بتن سخت شده آتی فراهم می‌کند (مستوفی نژاد، 1394).

توجه شود که در هر حال کارکردن با بتنی با W/c کمتر از 0.4، امکان پذیر نیست.

1-6- بتن تازه:

بتنی است که تازه ساخته شده و دارای خاصیت روایت یا بلاستیسیته است. مهم‌ترین مسئله در بتن
تازه میزان کارآیی آن است.

تعریف کارآیی: کارآیی عبارت است از درجه‌ی سهولت ریختن و کارکردن با بتن. هر چه ریختن بتن
تازه و کارکردن با آن ساده‌تر باشد، بتن از کارآیی بالاتری برخوردار است و هر چه کار کردن با بتن
سخت‌تر باشد کارآیی آن پایین‌تر از یک کمتر است. آزمایش استاندارد که برا پیش‌گرفته کردن درجهٔ
کارآیی به کار گرفته می‌شود، آزمایش اسلامی است.

شکل 1-1- مخروط ناقص آزمایش مخصوص آزمایش اسلامی
برای آزمایش، بتن تازه را در سه لایه در مخروط جای می‌دهند و با میله‌های لایه‌های را وبره می‌کنند. سپس سطح آن را صاف کرده و مخروط را به سمت بالا حرکت می‌دهند. بتن پس از بیرون آمدن از قالب مخروطی، مقداری افت می‌کند. میزان این افت بر حسب سانتی‌متر یا کارایی می‌ماند. این افت می‌تواند از صفر تا سانتی‌متر تغییر کند. یعنی به صورت نظری می‌توانیم اسلام‌سنج یا سانتی‌متر را داشته باشیم. معمولاً برا ی کارهای بتن آرمور باید در محدوده ۵ تا ۱۰ سانتی‌متر انداخت. عدد اسلام‌بای برا ی کارهای عادی بتنی (بتن بدون آرمور یا ب با آرمور کم) در محدوده ۲ الی ۵ سانتی‌متر انتخاب می‌شود. در حالی‌های استثنایی که تراکم آرمور زیاد باشد یا از بتن پر برا ی انتخاب استفاده شود، اسلام‌بای ۱۰ الی ۱۲ سانتی‌متر نیز مورد استفاده قرار می‌گیرد. به‌همه‌اين است هر چه اسلام‌بای کمتری انتخاب شود، خواص مطلوب بتن در بتن سخت شده، بهتر خواهد بود.

1-۶-۱ بعضی از مسئله‌ی که ممکن است در بتن تازه به وجود آید:

الف) آب انداختن:

آب انداختن بتن از نظر یک پدیده‌ی ظاهری اینگونه نجیلی می‌کند که پس از بتن ریزی و پرداخت سطحی بتن، یک لایه‌ای نازک آب آغشته به سیمان، روی سطح بتن ظاهر می‌شود. این آب از قسمت‌های زیرین بتن به دلیل خاصیت موئی‌سیری‌های سطحی بالا آمده و در مسیر خود احتمالاً مقداری سیمان را نیز با خود شسته و همراه می‌کند. لذا در قسمت‌های بالایی بتن، مقدار آب موجود، از آبی که در طراحي در نظر گرفته شده بیشتر خواهد شد و بر عکس، در قسمت‌های پایینی بتن مقدار آب کمتر خواهد گردید.

مشخصات نامطلوب بتن آب انداختن به شرح زیر است:

1. پس از سخت شدن نامرغوب بوده و به مقاومت مطلوب و مورد نظر نخواهد رسید.

2. لاشه روبی بتن آب انداخته، پس از سخت شدن (سخت شدن) به مرور زمان و با استفاده‌هاي ترافیکی از آن، بودن شده و به صورت گرد و خاک در می‌آید. با این جهت سطح روی ناصف شده و پیده‌ی "بودر شدگی" اتفاق می‌افتد. چنین بنتی اول با بندها شده و ثانیاً نقطه ذهای خصوصی برای شرایط یک زدگی و هوازدگی خواهد بود. آب انداختن پدیده‌ی بسیار نامطلوبی است و با باید حتی المقدور از ایجاد آن گلوری کرد. منشا این اینکه از استفاده‌های سعی می‌کند با زیاد ماله کشیدن بر روی سطح بتن، یک فشر آب در سطح ایجاد کند، غافل از اینکه این عمل ضعف‌های اساسی برای بتن ایجاد می‌کند.
مهمترین دلیل در آب انتخاب بتن، اسلام بیش از حد است. بنابراین کارآیی و اسلام بر کم در کنار مزایایی دیگر، احتمال آب انتخابت نیز کاهش می‌دهد. دلایل دیگر از جمله ویبره بیش از حد و نیز نامناسب بودن دانه بندی، احتمال آب انتخابت بتن را افزایش می‌دهد.

(ب) جدا شدن دانه‌ها:

 جدا شدن دانه‌ها از یکدیگر است که در بتن تازه اتفاق می‌افتد. به این ترتیب که دانه‌های جلو که مخلوط نشست کرده و به سمت پایین حرکت می‌کنند و دانه‌های ریزتر به سمت بالا منتقل می‌شوند. بنابراین بتن حالت یکتاختی خود را از دست داده و توزیع دانه‌بندی به هم می‌خورد.

 جدا شدن دانه‌ها در بتن تازه یک پدیده نامطلوب محصول می‌شد و ناظرین و مهندسین کارگاه هم‌واره با این سوی کنند تا از عواملی که ممکن است منجر به رزیز این حال شود جلوگیری نمایند. بنی‌کننده که دانه‌های آن جدا شده از نظر مقاومت مفید و خمیشی ضعیف شده و به جد مطلوب نخواهد رسید.

 مهمترین دلیل جدا شدن دانه‌ها در بتن تازه اسلام بیش از حد است. دلایل دیگر از قبیل ویبره بیش از حد، جا به جا گردیدن بتن در قالب به سپاسی بیل یا ویرناتور، ریختن بتن از ارتفاع نیز ممکن است به جدا شدن دانه‌ها منجر شود. این موارد نامی‌بودن دانه‌ها ممکن است به جدا شدن دانه‌ها قبل از ساخت بتن، احتمال عدم وجود دانه بندی یکتاخت و صحیح در بتن ساخته شده منجر شود. به همین جهت لازم است انتخاب کردن دانه‌های شن و ماسه در کارگاه به صورت مجزا و در پرده‌های جداگانه صورت گیرد (مستوفی نزاد 1394).

1-7-1 دانه‌ها در بتن:

 بین 70 تا 80 درصد از حجم بتن توسط دانه‌های سنگی اشغال می‌شود. بدین ترتیب منطقی خواهد بود که دانه‌ها نقش عمیق و اساسی در خصوصیات و عملکرد بتن داشته باشد. با این وجود بسیاری از مهندسین و دست اندکاران صنعت بتن، به نقش اساسی دانه‌ها در بتن توجه نموده و آن را فقط برکندی حجم بتن و کم تأثیر از نظر خصوصیات می‌داندند. همچنین خصوصیات دانه‌ها از جمله شکل، اندازه، جنس، تخلخل و کانال‌های تشکیل دهنده آن، در رفتار و عملکرد بتن تاثیر جدی می‌گذارند.

 اصول دانه‌های مصرفی در بتن بايد مکانی، پایدار و از نظر شیمیایی بی‌تاثیر باشد. امروزه بسیاری از دانه‌های مصرفی در بتن از سنگ طبیعی هستند که ممکن است بدون هیچ گونه تغییر شکل، از منابع
قرض‌های رودخانه‌ای تامین شوند، و یا با شکستن و خرد کردن شن‌های درشت و یا قطعات سنگ در سنگ‌شکن، به ابعاد مناسب جهت مصرف در بین تبدیل می‌شوند. دانه‌های سنگی به دو دسته‌ی دانه‌های درشت یا شن و دانه‌های ریز یا ماسه تقسیم می‌شوند. نسبت وزنی دانه‌های ریز و درشت به کل دانه‌ها در بتن‌های متغیر ممکن است بین 40 تا 60 درصد متغیر باشد. مرز اندازه‌ی دانه‌های ریز و درشت، الک استاندارد نمره ۱۴/۶ است که اندوزه‌ی شبکه‌ی آن (۳/۱۶) از میلی‌متر است، به طوری که دانه‌های عبوری از الک نمی‌روند و دانه‌های ریز را روی الک نمی‌روند، ۳/۲ میلی‌متر می‌شوند. از طرفی دانه‌های ریز نیاز به کوچکتر از ۲/۷۵ میلی‌متر باشند.

۸-۳- تهیه، مقاومت و سختی دانه‌ها:

دانه‌ها باید کاملاً تمیز باشند، يعني همراه با یگل و لای، نیز آبوده به ناخالصی‌های سیمان نیز نباشند. ذرات ریزتر از ۲/۷۵ میلی‌متر (گذرندگی از الک شماره ۲۰۰) که غالباً از سیلت و رس هستند، گردوغبار نرمی هستند که روی دانه‌ها قرار گرفته و از آن‌پایه کامل دانه با خمیر سیمان جلوگیری می‌کند. حداکثر میزان مجاز ذرات ریزتر از ۲/۷۵ میلی‌متر برای دانه‌های درشت ۱ درصد است. همچنین حداکثر میزان مجاز ذرات ریزتر از ۲/۷۵ میلی‌متر برای دانه‌های ریز، ۳ درصد برای دانه‌های دارای ریز، ۵ درصد برای سایر مواد است.

آلودگی‌های شیمیایی در دانه‌ها اکثراً به صورت سطحی بوده و ممکن است همراه با مواد سولفاتی و گل‌آلی باشد. ناخالصی‌های آن ممکن است گسترده‌های سیمان و سخت شدن بتن را به تأخیر انداخته و مقاومت بتن را کاهش دهد. اگر دانه‌ها در محل نامناسب و در مجاورت برگ درختان یا اجزای مختلفی شده، گیاهان بوشیده باشند ممکن است به مواد شیمیایی نیتراتی آلوده شوند. توجه شود که اصول شستشوی مناسب دانه، به تنها گردوغبار، خاک و گل و لای را از آن جدا می‌کند، یک سیستم اصلاح‌کننده که تا حد قابل توجهی آلودگی‌های شیمیایی سطحی را نیز از آن دور می‌نماید.

دانه‌ها از نظر مکانیکی نیز باید مقاوم باشند. از آنجا که دانه‌ها نقش باربری و اسکلت‌بندی بتن را به عهده دارند و عامل اصلی در انتقال تنش هستند، در صورت مقاوم نبودن در مقابل تنش، زود شکسته و متلاشی می‌شوند بنابراین بتن ساخته شده با آنها مقاومت مناسبی از خود نشان نخواهد داد.
از نظر سختی و مقاومت، سنگ‌ها در 3 دسته تقسیم می‌شوند:
الف) سنگ‌های سخت و مقاوم: شامل اکثر سنگ‌های سیلیسی از قبیل گرانيت، کوارتزیت، آندوزیت و بازالت.
ب) سنگ‌های نیمه‌سخت (متوسط): شامل اکثر سنگ‌های آهکی از قبیل سنگ‌های آهک، دولومیت، مرمر و تراورتن.
ج) سنگ‌های سست: شامل سنگ‌های رسی از جمله شیل و سنگ رس (مستوی نژاد، 1394).

1- مواد زیان آور در دانه‌ها:

دannahای باید فاقد مواد زیان‌آور و از جمله کلولشه‌های رسی، ذرات سست، چرخ، ذغال سنگ و لیگنیت (نوعی ذغال سنگ) باشند. و رس و ذرات سست ممکن است به صورت توده‌ای و کلولشه‌ای در دانه‌های سنگی طبیعی وجود داشته باشند. اگر توده‌های سست و ذرات سست در نزدیکی سطح دانه قرار گیرند، ممکن است تحت تاثیر ترافیک باعث ایجاد جرحه شوند. به طور کلی کلولشه‌های رسی، ذرات سست و چرخ بر کارایی بتن و دوام آن تأثیر گذاشته و ممکن است باعث چیدگی قسمتهایی از بتن شوند.

همچنین ذغال سنگ، لیگنیت و سایر مواد مشابه سبک، بر دوام بتن تأثیر گذاشته و ممکن است لکه‌های برسطح بتن ایجاد کند. نیز باعث برپورن چیدگی قسمتهایی از بتن شوند. استفاده‌دهنده‌ها معمولاً درصد مجاز کلولشه‌های رسی و ذرات سست را حدود 3 درصد، و درصد مجاز ذغال سنگ و لیگنیت را حدود 5 درصد تعیین می‌کنند (مستوی نژاد، 1394).

1-1 مقاومت یخ‌دزدگی دانه‌ها:

دانه‌ها باید در مقابل یخ زدن و ذوب شدن مقاوم باشند، در غیر این صورت بتن سخت شده در سیکل‌های یخ زدنگی از ناحیه‌ای دانه‌ها آسیب پذیری بوده و رنگ رنگی متلاشی خواهد شد. مقاومت در برابر سیکل‌های یخ زدن و ذوب شدن به عواملی هم جون می‌دانیم تخلخل دانه، نفوذ‌پذیری دانه و پتانسیل جذب آب آن، و نیز مقاومت کشملی دانه را دارد.

مقاومت پایین دانه‌ها در مقابل سیکل‌های یخ زدن و ذوب شدن، ممکن است در روهی‌های بتنی در معرض یخ‌بندان، پس از 3 تا 4 سال، ترك خوردگی خاصی به نام ترك خوردگی D ایجاد کند. ترك‌های به صورت ترك‌های بیا قوافل نزدیک و موازی با دره‌های عرضی و طولی موجود در روهی بتنی ایجاد D
شده و بعدا از طرف درز به سمت مرکز پنل رونی گسترش می‌یابد، به طوری که در نهایت به شکل حرف D انگلیسی در می‌آید (مستوفی نژاد، 1394).

1-11- تأثیر عمل آوری بر مقاومت فشاری بتن:

منظور از عمل آوری، روشی است که در پی آن هیدراتاسیون سیمان انجام می‌گیرد و در آن دما، رطوبت و... کشیده می‌شود. مثلاً می‌توان یک درون آب سرد قرار داد، یا یک آب گرم آن را عمل آورد و یا با روش‌هایی مانند توزیع بخار گرم به عمل آوردن آن کمک کرد. در همه این عمل‌های آوردن رساندن آب به خمیر سیمان برای انجام هیدراتاسیون کامل می‌باشد.

وقتی که رطوبت نسبی در داخل منافذ به کمتر از 80 درصد کاهش یابد، هیدراتاسیون به مقدار قابل توجهی کاهش می‌یابد. پس بهتر است مقدار رطوبت در بتن، در حد 80 درصد حفظ گردد.

عمل آوری به دو صورت مصنوعی و طبیعی انجام می‌گیرد. عمل آوری مصنوعی یک حیثیت مناسب برای عمل آوردن بهتر است. بهتر است که رطوبت افت نکند، زیرا هم به مقاومت اثر می‌گذارد و هم باعث ایجاد ترک در مخلوط بتن می‌شود.

در پن معمولاً فقط سطح خارجی در معرض رطوبت قرار می‌گیرد و درون آن از رطوبت به دور است. بنابراین شده در یک نیاز مطلوب به عمل آوری دارد و لیکن به علت ضخامت پوشش بتن این عمل اتفاق نمی‌افتد. به همین دلیل در مورد سازه‌های نازک دوری از رطوبت خیلی نگران نمی‌شود و با عمل آوری تمام قسمت‌های آن به خوبی به عمل می‌آید.

گرچه نفوذ‌پذیری قسمت‌هایی خارجی بتن، تأثیر زیادی بر عدم خوردوگذاری فولادها در بتن مسلح دارد، البته هیدراتاسیون کامل برای کسب مقاومت نهایی بتن مورد نیاز نیست و در عمل هم، چنین حالتی به سختی پیش می‌آید. در این صورت که تا حد امکان هیدراتاسیون را زیاد کنیم.

روش های عمل آوری:

انواع عمل آوری به دو دسته، عمل آوری مطمئن و عمل آوری غشاوی تقسیم می‌شوند، در روش مطمئن، هدف نامن آبی است که می‌تواند توسط بتن جذب گردد. در این روش سطح بتن دائماً زمینه
که برای بتن مشکل ایجاد نمی کند در معرض آب قرار می گیرد. برای این منظور می توان سطح بتن را آپاشی کرد و یا بتن را زیر لایه ای از آب یا چاه مرطوب قرار داد. روش های دیگر، قرار دادن گویی خیس یا استفاده از لوله های آب است که به طور مداوم سطح بتن را مرطوب نگه دارند. با یاد بیان نطنز توجه کرد که این که روزانه بتن می ریزیم حاوی موادی نیاپرد که به بتن صدمه بزند. همچنین دمای آب طبق پیشنهاد ACI، ۱۱ درجه سانتی گراد می باشد.

در روش دوم، همان عمل آوری غشاپی است که بر مبنای جلوگیری از افت رطوبت از سطح بتن قرار دارد. بدون اینکه امکان نفوذ آب از خارج به داخل بتن وجود داشته باشد. برای این منظور از ورقه‌ای پلاستیکی یا کاغذ‌های تقویتی استفاده می‌کنیم.

از عوامل مهم در عمل آوری، زمان عمل آوری می‌باشد. بسته به عوامل محیطی نظر یخ زدگی، موادشیمیایی خونده و... زمان های متفاوتی پیشنهاد شده است. در استانداردهای متفاوت زمان‌های گوناگون پوشسینه و توصیه شده است. نکته قابل توجه این است که این زمان‌ها از آزمایشاتی که بر روی نمونه‌ها یا عمل آوری‌های متفاوت انجام می‌گردد به دست خواهد آمد.

نکته قابل توجه دیگر این است که اجرای عمل آوری بسیار مهم است. چرا که عموماً عمل آوری خویش پیشنهاد می‌شود ولی در اجرای مشکلات بر می‌خورد و عموماً چنانچه شاید هم باید اجرای نمی‌شود.

1-2-1 تأثیر عبار سیمان بر برخی خواص مکانیکی و دوامی بتن‌های حاوی میکروسیلیس:

بنب طراحی و اجرای مناسب، همواره به عنوان یکی از مصالح پرطرفدار در سازه‌های عمرانی مورد استفاده قرار گرفته است. مهمترین جزء بتن که نقش چسباندن سنگدانه‌ها و انتقال نیروهای وارد به سازه بنتنی به تمام اجزای آن را یافته می‌کند سیمان می‌باشد. میزان عبار سیمان در مخلوط سیمان در مخلوط بتن تاثیر بالایی بر مقاومت و رفتار مکانیکی بتن از یک سو و نفوذپذیری و به ویژه رفتار دوامی بتن در برای محیط مهاجم از سوی دیگر دارد. به همین دلیل آینده‌های مختلف محدودیت‌هایی را برای حداکثر و حداکثر عیار سیمان در مخلوط تعیین کرده‌اند. شکی نیست که نسبت سنگدانه‌ها به سیمان فقط یک عامل درجه‌ی دوم در مقاومت بتن است. اما مشاهده شده است که در نسبت ثابت آب به سیمان مخلوط با سیمان کمتر مقاومت بیشتری ایجاد می‌نماید (متروی و شاکلاک، 1954). مطالعات مختلفی نشان داده است

1. Emroy & shacklock
که دریک نسبت ثابت آب به سیمان، با افزایش عیار سیمان در مخلوط، بسی به طرح اختلاف بین مقاومت بتن کاهش می‌یابد (دشپانده و همکاران، 2007). با افزایش خمیر، طول مسیر ترم ناشی از تنش تنش فشاری بین شکست بتن کاهش می‌یابد. که در نتیجه نیاز به انرژی کمتر و با به عبارت دیگر بار کمتر بین شکست دارد. آن‌ها نشان دادند که در یک میزان تخلخل ثابت، افزایش حجم خمیر موجب افزایش حفرات در خمیر و ناحیه مشترک سنگدانه و خمیر می‌گردد (کولیاس و جورجویا، 2005). افزایش حجم خمیر و کاهش سنگدانه، موجب افزایش جمع‌صدگی بتن می‌گردد. که در نتیجه آن ترکها افزایش یافته و پیوستگی بین سیمان و سنگدانه کاهش می‌یابد. که در نتیجه آن مقاومت کاهش و نفوذ‌پذیری افزایش می‌یابد (دشپانده و همکاران، 2007). این پدیده به ویژه در نسبت آب به سیمان پایین بیشتر خود را نشان می‌دهد. برخی از مطالعات تخلخل در خمیر، با افزایش سیمان، علت کاهش مقاومت می‌دانند (رگیتر و رزیسی، 2002). در یک نسبت آب به سیمان ثابت، افزایش عیار سیمان به معناً افزایش سهم آب در مخلوط می‌یابد. آقای جی‌سی پون (2007)یا بررسی‌های نسبت A/C نسبت 3، 4 و 6 سنگدانه‌ها به سیمان برخواست بلکه‌های بیش‌تر نتیجه دریافت‌های که با افزایش مقاومت‌های فشاری و کششی کاهش می‌یابد. آن‌ها علت این امر را به مقاومت سنگدانه‌ها، مقاومت خمیر و جنس‌گی بین خمیر و سنگدانه به علت کاهش حجم سنگدانه‌ها در مخلوط نسبت داده‌اند.

با این وجود مطالعات محدودی روند متفاوتی را گزارش نموده‌اند. تحقیقات شین و همکاران در سال 2003 نشان داده است که با افزایش عیار سیمان از 200 تا 500 کیلوگرم بر سانتی‌متر مکعب، مقاومت فشاری بتن افزایش می‌یابد. آن‌ها ادعا کرده‌اند که به علت بالا بودن سطح ویژهی جریان سیمان نسبت به سایر اجزای مخلوط، با افزایش عیار سیمان، دانسته‌ی بتن بالاتر رفته و در نتیجه به بیشترترین می‌شود. و به همین علت مقاومت فشاری نیز با افزایش عیار سیمان بالاتر می‌رود. همچنین مشاهده شد که جذب آب بین با افزایش عیار سیمان دچار کاهش می‌شود که علت احتمالی این امر را کاهش تخلخل بتن با افزایش ذرات ریز سیمان بیان کرده‌اند (ران سین چوگن و کومار، 2010). همچنین با توجه به اینکه بتن معمولی دارای نقاط ضعفی است و همچونه دانشمندان علم تکنولوژی پت در تلاش برای رفع وضعیت‌های بین با استفاده از مواد اصلاح کننده خواص بتن یا به اصلاح افزوده‌های به بتن بوده‌اند میکروسیلیس به عنوان یک سوپر بزولان در میان اصلاح کننده‌های خواص بتن کاربرد ویژه‌ای یافته‌اند.

2. Deshpande
3. Kolias & Georiou
1. yegiter and rezici
2. chi sun poon
3. shain
4. Ransinchung and kumar
است، مطالعات انجام شده حاکی از این است که افزودن با جایگزین کردن میکروسپلیس به جای سیمان به‌ویژه قابل توجهی چه بر خواص مکانیکی و چه نفوذ‌پذیری و دوام بین ایجاد می‌کند. این گونه کوکسال 1 و همکاران در سال 2008 با بررسی تأثیر متقابل میکروسپلیس و الیاف فلزی بر رفتار مکانیکی بنیه‌های ضمایم دریافتند که استفاده از میکروسپلیس هم‌وقت افزایش خواص مکانیکی بتن نظیر مقاومت شکری و خشکی و خمشی می‌شود و هم مدل الاستیسیته بتن را بالا می‌برد، آنها دلیل این امر را تأثیر خاصیت پرکندگی میکروسپلیس که موجب افزایش مقاومت ناحیه انتقالی بین خمیر سیمان و سنگ‌دانه می‌شود در نظر گرفتند. آقای چیام.آ.دروتو و همکاران نیز در سال 2004 با افزودن میکروسپلیس به بتن ضمایم بهبود خواص فیزیکی و مقاومت شرایط دستگاه بهبود شدند و علت این بیشتر
را خواص پرکندگی و پوزولانی میکروسپلیس دانسته‌اند.

۱۳-۱- دانه بندي مصالح دانه‌ای:

dانه‌بندی به معنای توزیع دانه‌ها از نظر ابعاد است. دانه‌بندی مصالح براساس منحنی دانه‌بندی مشخص می‌شود. منحنی دانه‌بندی در حقيقیت یک منحنی است که نحوه توزیع دانه‌ها از نظر ابعاد را تعیین می‌کند. برای تنظیم منحنی دانه‌بندی، ابتدا شن با ماسه و یا مخلوط شن و ماسه مورد نظر را انتخاب نموده و از الکهای استاندارد عبور می‌دهند تعداد الکهای استاندارد مداول مورد استفاده در دانه‌بندی مصالح دانه‌ای ریز و درشت ۹ عدد است، که ۵ الک در محدوده ماسه، یک الک به عنوان مرز شن و ماسه و سه الک در محدوده شن قرار دارد. برای رسم منحنی دانه‌بندی، ابتدا مقدار مشخصی از دانه‌ها را وزن کرده و از روى الکهای استاندارد عبور می‌دهند. مقدار مصالح مورد آزمایش براساس استاندارد ASTM C 136، بستگی به وزن‌گیری بعد دانه در محدوده مورد بررسی داشته و مقدار اکر بزرگ‌ترین بعد دانه 6/4، 3/7/5، 2/5/19، 19/5/9/1/5، 3/7/5، 1/5/0/10/0، 1/5/0/10/0، 2/3/0/100، 150 کیلوگرم انتخاب می‌شود. ارتقاء مجموعه الک‌ها به غالبی به وسیله دستگاه لرزانده انجام می‌شود، تا آن جا ادامه می‌یابد که در طول زمان 1 دقیقه، پیش از 1 درصد مواد باقی مانده روي الک از آن عبور نکند. سپس وزن دانه‌های مانده روی الک تعیین شده و درصد آن نسبت به وزن کل مصالح مورد آزمایش محاسبه می‌شود. آن‌گاه مجموع درصددهی مانده روي الک و الکهای بالاتر (درصد تجمعی)، از ۱۰۰ کسر می‌گردد تا درصد رصد شده از آن الک به دست آید.

5. fuat koksall
3. J.M.R.Dotto
داهنده‌یا در حقيقةً پیان گر میزان حفره‌هایی است که باید با خمیر سیمان بر شود؛ و سطح دانه‌هایی که باید با خمیر سیمان پوشش داده شود. هدف تئوری دانه‌نیایی آن است که حداکثر حجم اشغال شده توسط دانه‌ها فراهم شود؛ در حالی که کم‌ترین سطح ظاهری برای مجموعه دانه‌ها ایجاد شده است. این هدف به منظور کاهش حجم خمیر سیمان بوده و بر این اساس استوار است که تمام فضای اشغال نشده با دانه، باید توسط حفره سیمان بر شود؛ و ضمینه سطح تمام اجزای جامد در مخلوط، باید توسط حفره سیمان مرطوب شده و پوشش داده شود.

منحنی‌های دانه‌نیایی به دو دسته تقسیم می‌شوند:
الف) منحنی دانه‌نیایی پیوسته
ب) منحنی دانه‌نیایی ناپیوسته (گستره)
(مستوی نزده، گشکاری یافته)\\n\\n۱۴-۱ مواد افزودنی بتن:
بتن می‌باشد همگن، کارا، برداخته‌شده، پاک و مقاوم باشد که موارد ذکر شده در بسیاری از موارد با انتخاب مصالح مصرفی و نسبت اختلاف مناسب و بهره‌گیری از تجهیزات و افزایش و کارآزموده دست‌یافته می‌باشد. استفاده از افزودنی‌های شیمیایی، دستیابی به این ویژگی‌ها را امکان‌پذیر خواهد نمود.

افزودنی‌ها موادی هستند که به غیر از سیمان برتلند، سنگدانه و آب به صورت پودر یا مایع برای اصلاح خواص بتن به مخلوط بتن اضافه می‌شوند. این اضافه‌شناسی می‌تواند طبق نظر دستگاه نظارت، کمی قبل از اختلاف، در حین اختلاف و یا قبل از درجا ریختن به مخلوط بتن اضافه گردد. به تعریف دیگر، مواد افزودنی اجزایی از بتن غیر از سیمان هیدرو‌لیکی، آب و سنگدانه‌ها می‌باشد که برای اصلاح و بهبود خواص بتن و ملات تازه و سخت شده، به مخلوط بتن افزوده می‌گردد.

می‌باشد مطمئن شد که استفاده از افزودنی‌ها برای سیمان و سنگ دانه‌دار مورد مصرفی، اثر نامطلوب نداشته باشد. ممکن است برخی از اثار نامطلوب، اثر خورا در طولانی متداوم دهند. این ایجاد خوردنگی در میلگردان مصرف شده در قطعات بتن مسلح و با ایجاد زمینه‌های ناسالم در بی‌حملی سیلیس‌ها به بتن، این نوع مشکلات می‌باشد حتی بررسی و مشاوره‌های نظارت و آزمایش‌ها بتن قرار داشته باشد. تا چگونه که مقدر است می‌باشد دو افزودنی به طور همزمان در مخلوط بتن استفاده
نتیجه و در صورت اجبار در این کار می‌باشند اثرات این دو ماده به روش یکدیگر مورد بررسی قرار گیرد. حداقل مرز مصرف موادان فاقدی ۵ درصد وزنی سیمان می‌باشد که در زمان ساخت و اختلاف و یا درست پیش از ریختن بتن، به مخلوط بتن اضافه می‌گردد.

در حالی که افزودنی‌های شیمیایی برای نوع تاثیر و کارکرد اصلی که در بین خواهد داشت به

۷ دسته تقسیم می‌شوند:

۱. کاهنده‌های آب: این افزودنی‌ها برای افزایش روغنی بتن در مقدار آب معین، یا کاهش میزان آب مصرفی و یا هر دو به کار رفته و شامل روان کننده‌ها، رفروان کننده‌ها و فرمان کننده‌ها می‌باشد.

۲. هوازاه‌ها: این افزودنی‌ها در حین اختلاف ساختاری همگین از ریز حباب‌های ناپیوسته در بتن، میل و یا خمیر سیمان به وجود آورده و سبب کارایی بیشتر و افزایش دوام در برابر سیکل‌های بخ دند و ذوب شدن می‌شوند.

۳. کنگیر کننده‌ها: افزودنی‌های هستند که با کنند کردن روغن آب‌گیری سیمان، گیرش بتن را به تأخیر می‌اندازند و شامل دوگیر کننده‌ها و تاگیر کننده‌ها می‌باشد.

۴. تسریع‌کننده‌ها: افزودنی‌هایی هستند که با تند کردن روغن آب‌گیری سیمان، سبب زودگیر شدن و زودسخت شدن می‌شوند. این مواد افزودنی شامل زودگیرکننده‌ها، آنی گیرها و زودسخت کننده‌ها می‌باشد.

۵. مناسب‌کننده‌ها: برای افزایش حجم در بین تازه، جبران جمع‌شوندگی بتن سخت‌شده و یا ایجاد انبساط بتن کنترل شده در بین سخت شده به کار می‌رود که شامل گازسازها و کفسازها می‌باشد.

۶. دوام‌بخش‌ها: دوام بخش‌ها یا پایاگرها یا کاستن از تفویض مواد زیانی، محافظت میلگردها یا کنترل واکنش‌های زیان‌آور، پایایی بتن سخت شده را بهبود می‌بخشند. نمی‌شود بازدارنده‌های خوراگی و کاهنده‌ای انبساط و کاهنده‌ای قلیایی سلیسی، شامل این تیپ افزودنی‌های هستند.

۷. افزودنی‌های خاص (متفاوت): این افزودنی‌ها دسته‌ای از افزودنی‌های شیمیایی با کاربرد ویژه و محدود هستند. برخی از افزودنی‌های خاص عبارتند از: هوازاه‌ها، پیوند‌زاها (لاتکس)، ضدی‌خا، قوام بخش‌ها و آسان کننده‌های پیمای.

۱۵-۱ تخریب بتن ناشی از ذوب و انجماد
تخربی ناشی از بیخ زدگی و ذوب مداوم آب درون بتن یکی از علل‌های شایع آسیب پذیری سازه‌های بتنی در اقلیم‌های سرد سپری است. شرایط زیبر در رخ دادن صدمات ناشی از انجام و ذوب موثر هستند.

1. سازه تحت تأثیر مداوم سیکل ذوب و انجام باشد.
2. خلل و فرج موجود بتن، در هنگام بیخ‌زدگی از آب اشباع بیش از ۹۰ درصد- شده باشد.

آب در مدت زمان انجام حدود ۱۵ درصد انقباض حجمی را تجربه می‌کند. اگر خلل و فرج و حفرات مویینه در بتن تقریباً در طول انجام اشباع شده باشد، این انقباض سبب اعمال نیروهای کشی شده و منجر به شکستگی و ترک خوردگی ماتریس سیمان می‌گردد. این تخریب تقریباً در تمامی لاشه‌های بتن از سطوح خارجی به داخل رخ می‌دهد، نزدیک به‌سرعت آسیب به تعادل جریان‌های انجام و ذوب، درجه اشباع سازه در طول انجام، تخلخل بتن، و شرایط قرار گرفتن در معرض تابش نور بستگی دارد. دیواره‌هایی که در معرض ذوب بر فراش‌های آب‌های سرد سپری است، شرایط حذف‌سازی آسیب به‌روز می‌گیرد، چرا که در حالت‌هایی که در معرض تابش نور و قرار گرفتن از سمت شمال ممکن است فقط یک چرخه انجام و ذوب را در هر زمستان، پشت سر گذرده و در نتیجه وضعیت مخرب به مراتب کاملی را تجربه می‌کند.

1. Angostura

شق دیگری از تخریب‌های ناشی از چرخه انجام و ذوب به عنوان ترک D (ترک‌هایی به شکل حرف بزرگ دی لاتین) شناخته می‌شوند. در این مورد، گسترش تخریب در اثر کیفیت پایین، خجذ پذیری، بالا و استفاده از سیگناده‌های درشت درملت سیمان رخ می‌دهد. این نوع ترک خوردگی اغلب در گوشه‌ها و کنجه‌ها بدون حفاظ دیوارها یا دیگر با در محل اتصال‌ها دیده می‌شود. در چنین آسیبی مجموعه‌ای از ترک‌های تقریباً موازی که بخصوص (آهک) از درون‌شان پبوروپ می‌ریزد (شوره می‌زند)، و منعولاً سراسر گوشه و کنار سازه را قطع می‌کند مشاهده می‌شود.

در سال ۱۹۴۲، دایره بزاسازی (Bureau of Reclamation) افزودنی‌هوارا را در بتن، به منظور کاهش تخریب سیکل ذوب و انجام آغاز نمود. سازه‌های بتنی ساخته شده قبل از این تاریخ فاقد داده صنعت آن‌ها هستند. این گردد، اوین سد ساخته شده با استفاده از مواد داده‌های بود.

1. Angostura
Title of thesis: The influence of wollastonite and microsilica on durability, freeze and thaw of concrete in sulfate and chlorate environment

Supervisor: Dr. Yaghoub Mohammadi
Advisor: Dr. Amin Ghanadi Asl

Graduation Degree: M.Sc
Major: Civil Eng
Specialty: Structural Eng
University: Mohaghegh Ardabili
Faculty: Engineering
Graduation Date: Number of pages: 138

Abstract:
In contrary to the inherent durability of concrete, there are so many concrete structures that don’t show effective properties against cold and drastic weather. One of the most important reasons of demolition of concrete in cold region of Iran emanate from freeze and thaw cycles of concrete. Strength of concrete against freeze and thaw cycles depends on and high stress on concrete, especially when water of aggregates becomes solid and alters volume of concrete in cold weather. This change in volume creates fine cracks in concrete. That finally cause decline in strength and invited numerous investigations. The problem becomes more critical when concrete in addition to continuous freeze and thaw is placed in destructive environments such as chlorate and sulfate. In this study effect of microsilica (0%, 5% and 7.5%) and wollastonite (0%, 5%, 10% and 12.5%) replaced with cement on four condition of control samples, cyclic samples in normal environment, cyclic samples in sulfate environment were investigated. Totally 432 samples were created which were divided into 4 groups of 108. 108 samples were measured as control samples at the age of 28, 56 and 74 days (simultaneously with completion of cycles of 45, 100 and 150) and three other 108 groups were also subjected to freezing and thawing tests according to the ASTM C 666B standard after 45, 100 and 150 cycles). Compressive strength and ultrasonic testing (dynamic modulus of elasticity) of samples after freeze and thaw cycles were considered as a perseverance criteria of concrete. In studying the effect of microsilica mixing with wollastonite the highest compressive strength was obtained for 5% microsilica with 5% wollastonite.

Keywords: Wollastonite, Micro Silica, Concrete, Chlorate, Sulfate and Freeze & Thaw
Thesis submitted in partial fulfilment of requirements for degree of M.Sc. in Structural Engineering

The influence of wollastonite and microsilica on durability, freeze and thaw of concrete in sulfate and chlorate environment

Supervisor:
Yaghoub Mohammadi (Ph. D)

Advisor:
Amin Ghanadi Asl (Ph. D)

By:
Milad Kazemi

2018-December